《深度剖析:特征工程—机器学习的隐秘基石》

在机器学习的宏大版图中,特征工程宛如一座隐藏在幕后却又至关重要的基石。它默默发挥着作用,将原始数据雕琢成模型能够有效学习和理解的形态,深刻影响着机器学习模型的性能与表现。

特征工程:机器学习的关键前奏

特征工程是运用领域知识和技术手段,对原始数据进行一系列处理,从而提取、选择、变换和创造特征的过程。它的核心目的在于让数据以更优的状态适配机器学习模型,挖掘数据中潜藏的关键信息,增强模型的学习与预测能力。可以说,特征工程是连接原始数据与高性能模型的桥梁,其重要性不言而喻。

特征工程的核心价值

提升模型预测精度

原始数据往往包含大量冗余和噪声信息,如果直接用于模型训练,会干扰模型对核心模式的学习。而通过特征工程,能够筛选出最具代表性和区分度的特征,去除无关信息,让模型聚焦于关键数据特征,从而大幅提升预测精度。例如在图像识别领域,直接使用原始像素值训练模型,效果通常不佳。通过边缘检测、纹理分析等特征提取技术,将图像转化为更具语义的特征,模型便能更准确地识别图像内容。

降低模型复杂度

过多的特征不仅会增加计算负担,还可能导致模型过拟合,降低泛化能力。特征工程中的特征选择技术,能够挑选出最关键的特征子集,减少模型需要处理的变量数量,降低模型复杂度。这不仅使模型训练更加高效,还能提高模型在新数据上的表现,增强其泛化能力,避免过拟合现象。

加速模型训练过程

在大数据时代,数据规模庞大,处理和训练数据的时间成本高昂。特征工程通过对数据进行合理的变换和筛选,减少数据量和计算量,从而显著缩短模型训练时间。例如,通过特征缩放技术将数据归一化到相同尺度,能使基于梯度下降的优化算法更快收敛,提高训练效率。

特征工程的主要操作

数据预处理:夯实数据基础

数据预处理是特征工程的首要环节,旨在对原始数据进行清洗和规范,为后续操作提供高质量的数据。它主要包括处理缺失值、异常值和数据标准化等操作。

  • 缺失值处理:现实数据中常常存在缺失值,若不处理,会影响模型性能。常用的处理方法有删除含有缺失值的样本,但这种方法可能会损失大量数据;也可以使用均值、中位数、众数等统计量填充缺失值,或者采用更复杂的K近邻算法,根据相似样本的特征值来填充缺失值。

  • 异常值处理:异常值是偏离数据主体分布的观测值,可能是由于数据录入错误或真实的极端情况导致。对于异常值,可以通过统计方法(如3σ原则)或机器学习算法(如Isolation Forest)进行检测和处理。处理方式包括修正异常值、将其视为特殊类别,或者直接删除。

  • 数据标准化:不同特征的量纲和取值范围可能差异很大,这会影响模型训练。数据标准化通过归一化(将数据缩放到0 - 1区间)或标准化(使数据具有均值为0、标准差为1的分布),消除量纲影响,使模型对不同特征的学习更加公平和有效。

特征提取:挖掘数据潜在信息

特征提取是从原始数据中创造新特征的过程,旨在挖掘数据中不易被直接发现的潜在信息。

  • 统计特征提取:对于数值型数据,可以计算各种统计量作为新特征,如均值、标准差、最大值、最小值、分位数等。这些统计特征能够反映数据的集中趋势、离散程度和分布特征,为模型提供更多维度的信息。

  • 文本特征提取:在自然语言处理中,需要将文本数据转化为数值特征。常见的方法有词袋模型(Bag of Words),它统计文本中每个单词的出现次数;TF - IDF(词频 - 逆文档频率),不仅考虑单词在文本中的出现频率,还考虑单词在整个文档集合中的稀有程度,能够突出文本的关键信息;词嵌入(如Word2Vec、GloVe)则将单词映射到低维向量空间,捕捉单词之间的语义关系。

  • 图像特征提取:图像数据的特征提取方法众多,如边缘检测(如Canny算法)能够提取图像的边缘信息,突出物体的轮廓;角点检测(如Harris角点检测)用于识别图像中的角点,这些角点通常包含重要的结构信息;尺度不变特征变换(SIFT)和加速稳健特征(SURF)等方法能够提取图像中具有尺度不变性和旋转不变性的特征点,广泛应用于图像匹配和目标识别等任务。

特征选择:筛选关键特征子集

特征选择是从已有的特征集合中挑选出最具代表性和预测能力的特征子集,去除冗余和无关特征。

  • 过滤法:基于特征的统计特性对特征进行评分和筛选,独立于模型进行操作。常用的统计指标有相关系数、卡方检验、信息增益等。例如,计算每个特征与目标变量的相关系数,选择相关性较高的特征,这种方法计算效率高,但可能忽略特征之间的相互作用。

  • 包裹法:将特征选择过程与模型训练相结合,以模型的性能指标(如准确率、召回率)作为评价标准,通过不断尝试不同的特征子集,选择使模型性能最优的特征组合。这种方法考虑了特征之间的协同作用,但计算成本较高,因为需要多次训练模型。

  • 嵌入法:在模型训练过程中自动进行特征选择,通过模型的内部机制(如正则化项、决策树的特征重要性)来判断特征的重要性,并选择重要特征。例如,L1正则化可以使模型在训练过程中自动将不重要特征的系数置为0,从而实现特征选择;决策树模型可以根据特征对节点分裂的贡献程度,计算特征的重要性,进而选择重要特征。

特征变换:优化特征表现形式

特征变换是对现有特征进行数学变换,以改善特征的分布和性质,使其更适合模型学习。

  • 数值变换:对于一些呈现偏态分布的数值型特征,可以通过对数变换、平方根变换等方法使其分布更加接近正态分布,这有助于提升模型的性能。例如,在处理收入数据时,由于高收入人群占比较小,数据往往呈现右偏态,通过对数变换可以使数据分布更加均匀,便于模型学习。

  • 离散化:将连续型特征转换为离散型特征,即分箱操作。例如,将年龄划分为不同的年龄段(如儿童、青年、中年、老年),将连续的数值范围划分为若干个区间。离散化可以减少数据的噪声,增强模型的稳定性,同时在某些情况下能够揭示数据中的潜在规律。

  • 特征组合:通过对现有特征进行组合,创造新的特征,以捕捉特征之间的交互作用。例如,在预测房价时,可以将房屋面积和房间数量相乘,得到一个新的特征,它可能反映了房屋的空间利用效率,对房价的预测有重要作用。

特征工程作为机器学习中不可或缺的关键环节,虽然不像一些前沿算法那样备受瞩目,但却在幕后默默支撑着模型的性能表现。通过深入理解特征工程的重要性和掌握其主要操作,我们能够将原始数据转化为模型易于学习和理解的形式,为构建高性能的机器学习模型奠定坚实基础,从而在数据驱动的时代中,更有效地挖掘数据价值,解决各种复杂的实际问题 。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/27051.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在笔记本电脑上用DeepSeek搭建个人知识库

最近DeepSeek爆火,试用DeepSeek的企业和个人越来越多。最常见的应用场景就是知识库和知识问答。所以本人也试用了一下,在笔记本电脑上部署DeepSeek并使用开源工具搭建一套知识库,实现完全在本地环境下使用本地文档搭建个人知识库。操作过程共…

【实战 ES】实战 Elasticsearch:快速上手与深度实践-1.2.2倒排索引原理与分词器(Analyzer)

👉 点击关注不迷路 👉 点击关注不迷路 👉 点击关注不迷路 文章大纲 1.2.2倒排索引原理与分词器(Analyzer)1. 倒排索引:搜索引擎的基石1.1 正排索引 vs 倒排索引示例数据对比: 1.2 倒排索引核心结…

计算机毕业设计SpringBoot+Vue.js线上辅导班系统(源码+文档+PPT+讲解)

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…

大模型原理与技术(毛玉仁)

一、基础知识 ①基于统计的语言模型:n-gram,基于前n-1个词预测第当前词,即统计词序个数计算概率(n阶马尔科夫)。如果预测句子的概率,需要将每个分词连乘。 常用的n小于5,随着n增大,…

ollama本地部署DeepSeek-R1大模型使用前端JS调用的详细流程

以下是关于如何在本地部署 DeepSeek-R1 大模型(通过 Ollama),并使用前端 JavaScript 调用其功能的详细流程。 前提条件 硬件要求: 建议至少 16GB RAM(运行较小模型如 1.5B 或 7B 参数版本),如果…

最好Wordpree+Apache+PHP安装教程

前提需要 PHP的安装最少需要7.4以上Mysql的安装,直接默认最新版就行APache服务器(HTTP服务器,只有用这个你的软件才能在服务器上运行) 安装apache 安装 sudo apt install apache2查看防火墙 sudo ufw app list如果有 Apache那…

deepseek使用记录18——文化基因之文化融合

文明长河中的生命浪花 在洛阳白马寺的银杏树下,年轻母亲指着"农禅并重"碑刻给孩子讲述祖辈耕作的故事;在哔哩哔哩的直播间里,00后女孩穿着汉服跳起街舞,弹幕飘过"这才是文化缝合怪"。当文明交融的宏大叙事照…

2025 GDC开发者先锋大会“人形机器人的开源之路”分论坛 | 圆桌会议:《开放协作:开源生态如何解锁人形机器人与具身智能的未来》(上篇)

在GDC全球开发者先锋大会期间,2月23日,由GDC组委会指导、国家地方共建人形机器人创新中心(以下简称“国地中心”)承办的“人形机器人的开源之路”主题论坛在上海西岸艺术中心成功举办。 在人工智能与机器人技术飞速发展的今天&…

txt 转 json 使用python语言

需求: 把如下的txt文档转成json输出 代码 import jsondef txt_to_json(input_file, output_file):data_list []with open(input_file, r, encodingutf-8) as f:for line in f:# 分割数据并去除换行符parts line.strip().split(,)print(f"{parts}")print(type(par…

快速入手-搭建Flask框架封装mysql并结合业务实际情况使用

1、安装包 pip install pymysql pip install dbutils 2、项目目录结构,注意目录的层级 3、在flask_project文件夹里创建__init__.py from flask import Flask, redirect, request, session def auth():# 拦截器print("拦截器")# js、css、img不拦截处…

【语法】C++中string类中的两个问题及解答

贴主在学习string类时遇到过两个困扰我的问题,今天拿出来给大家分享一下我是如何解决的 一、扩容时capacity的增长问题 在string的capacity()接口中,调用的是这个string对象的容量(可以存多少个有效字符),而size()是调用的string对象现在有…

P8720 [蓝桥杯 2020 省 B2] 平面切分--set、pair

P8720 [蓝桥杯 2020 省 B2] 平面切分--set、pair 题目 分析一、pair1.1pair与vector的区别1.2 两者使用场景两者组合使用 二、set2.1核心特点2.2set的基本操作2.3 set vs unordered_set示例:统计唯一单词数代码 题目 分析 大佬写的很明白,看这儿 我讲讲…

协议-Airkiss

是什么? 设备 A 与外界没有建立任何实质性连接,可以称之为信息孤岛。设备 B 通过路由 或者直接 将 Wifi 的 ssid 与密码 UDP广播 传递给 A 为什么? 解决将无线网络的 ssid 与密码传输到设备难题 怎么做? 芯片自带AT指令开启Air…

git从零学起

从事了多年java开发,一直在用svn进行版本控制,如今更换了公司,使用的是git进行版本控制,所以打算记录一下git学习的点滴,和大家一起分享。 百度百科: Git(读音为/gɪt/)是一个开源…

企微审批中MySQL字段TEXT类型被截断的排查与修复实践

在MySQL中,TEXT类型字段常用于存储较大的文本数据,但在一些应用场景中,当文本内容较大时,TEXT类型字段可能无法满足需求,导致数据截断或插入失败。为了避免这种问题,了解不同文本类型(如TEXT、M…

《Python实战进阶》No 10:基于Flask案例的Web 安全性:防止 SQL 注入、XSS 和 CSRF 攻击

第10集:Web 安全性:防止 SQL 注入、XSS 和 CSRF 攻击 在现代 Web 开发中,安全性是至关重要的。无论是用户数据的保护,还是系统稳定性的维护,开发者都需要对常见的 Web 安全威胁有深刻的理解,并采取有效的防…

nio多线程版本

多线程多路复用 多线程NIO,,就是多个线程,每个线程上都有一个Selector,,,比如说一个系统中一个线程用来接收请求,,剩余的线程用来读写数据,,每个线程独立干自…

LabVIEW DataSocket 通信库详解

dataskt.llb 是 LabVIEW 2019 内置的核心函数库之一,位于 vi.lib\Platform\ 目录下,专注于 DataSocket 技术的实现。DataSocket 是 NI 提供的网络通信协议,支持跨平台、跨设备的实时数据共享,广泛应用于远程监控、分布式系统集成等…

【UI设计——视频播放界面分享】

视频播放界面设计分享 在本次设计分享中,带来一个视频播放界面的设计作品。 此界面采用了简洁直观的布局。顶部是导航栏,包含主页、播放、搜索框等常见功能,方便用户快速找到所需操作。搜索框旁输入 “萌宠成长记”,体现了对特定内…

论coding能力 new bing 对比 chatgpt

近日需要编程计算每个月的第二个星期二是哪一天,因为那一天需要做一件重要的事情,我想在这个日期做一个提醒,于是把这个重任交给当下最火的AI,微软new bing和chatGPT,实验对比结果如下:微软new bing会给你参…