基于OpenCV的图形分析辨认02

目录

一、前言

二、实验目的

三、实验内容

四、实验过程


一、前言

编程语言:Python,编程软件:vscode或pycharm,必备的第三方库:OpenCV,numpy,matplotlib,os等等。

关于OpenCV,numpy,matplotlib,os等第三方库的下载方式如下:

第一步,按住【Windows】和【R】调出运行界面,输入【cmd】,回车打开命令行。

第二步,输入以下安装命令(可以先升级一下pip指令)。

pip升级指令:

python -m pip install --upgrade pip

 opencv库的清华源下载:

pip install opencv-python  -i https://pypi.tuna.tsinghua.edu.cn/simple

numpy库的清华源下载:

 pip install numpy  -i https://pypi.tuna.tsinghua.edu.cn/simple

matplotlib库的清华源下载:

pip install matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simple

os库的清华源下载:

pip install os  -i https://pypi.tuna.tsinghua.edu.cn/simple 

二、实验目的

1.了解不同图像缩放算法;

2.基于公用图像处理函式库完成图片、视频缩小及放大;

3.根据图像缩放算法,自行撰写代码完成图像及视频数据的缩小及放大;

4.比较及分析公用函式库及自行撰写函式的效能。

三、实验内容

1.任选彩色图片、视频,进行缩小及放大

(1)使用OpenCV函数

(2)不使用OpenCV函数

  1. Nearest-Neighbor interpolation
  2. Bi-linear interpolation

2.在彩色图、视频上任意选取区域執行不同的放大方式,结果如下图

(1)使用OpenCV函数

(2)不使用OpenCV函数

  1. Nearest-Neighbor interpolation
  2. Bi-linear interpolation

四、实验过程

(1)基于OpenCV的图像和视频缩放:

图像代码如下:

import cv2
import matplotlib.pyplot as plt# 读取原始图像
img_origin = cv2.imread(r"D:\Image\img1.jpg")
# 获取图像的高度和宽度
height, width = img_origin.shape[:2]
# 放大图像
img_amplify = cv2.resize(img_origin, None, fx = 1.25, fy = 1.0, interpolation = cv2.INTER_AREA)
# 缩小图像
img_reduce = cv2.resize(img_origin, None, fx = 0.75, fy = 1.0, interpolation = cv2.INTER_AREA)# 创建一个大小为(10, 10)的图形
plt.figure(figsize=(10, 10))
# 在第1行第1列的位置创建子图,设置坐标轴可见,设置标题为"origin" 
plt.subplot(1, 3, 1), plt.axis('on'), plt.title("origin")
# 显示原始图像
plt.imshow(cv2.cvtColor(img_origin, cv2.COLOR_BGR2RGB))# 在第1行第2列的位置创建子图,设置坐标轴可见,设置标题为"amplify: fx = 1.25, fy = 1.0"
plt.subplot(1, 3, 2), plt.axis('on'), plt.title("amplify: fx = 1.25, fy = 1.0")
# 显示放大后的图像
plt.imshow(cv2.cvtColor(img_amplify, cv2.COLOR_BGR2RGB))# 在第1行第3列的位置创建子图,设置坐标轴可见,设置标题为"reduce: fx = 0.75, fy = 1.0"
plt.subplot(1, 3, 3), plt.axis('on'), plt.title("reduce: fx = 0.75, fy = 1.0")
# 显示缩小后的图像
plt.imshow(cv2.cvtColor(img_reduce, cv2.COLOR_BGR2RGB))# 调整子图布局
plt.tight_layout()
# 显示图形
plt.show()
# 保存图像
retval = cv2.imwrite(r"D:\Image\image_lab2\img_amplify.jpg", img_amplify)
retval = cv2.imwrite(r"D:\Image\image_lab2\img_reduce.jpg", img_reduce)

代码运行结果:

视频代码如下:

import cv2
import oscap = cv2.VideoCapture(r"D:\Image\video1.mp4")
currentframe = 0# 循环读取视频帧并保存为图片
while (True):ret, frame = cap.read()if ret:name = str(currentframe)cv2.imwrite(r"D:\Image\image_lab2\video_img\%s.jpg"%name, frame)currentframe += 1else:break# 释放视频对象
cap.release()video_path = r"D:\Image\image_lab2\video_img"
# 获取视频文件夹中的所有文件
img_files = os.listdir(video_path)
# 统计图片文件数量
img_count = len(img_files)
# 设定视频编解码器
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
# 设定图片大小放大后的目标尺寸
img_size_amplify = (1280, 1280)
# 设定图片大小缩小后的目标尺寸
img_size_reduce = (720, 720)
# 视频保存路径(放大版本)
video_save_amplify = r"D:\Image\image_lab2\video_amplify.mp4"
# 视频保存路径(缩小版本)
video_save_reduce = r"D:\Image\image_lab2\video_reduce.mp4"
# 创建放大版本的视频写入对象
video_writer_amplify = cv2.VideoWriter(video_save_amplify, fourcc, 60, img_size_amplify)
# 创建缩小版本的视频写入对象
video_writer_reduce = cv2.VideoWriter(video_save_reduce, fourcc, 60, img_size_reduce)
print("视频放大及缩小开始")for i in range(0, img_count):# 设定图片文件路径img_path = video_path + "/" + str(i) + ".jpg"# 读取图片img = cv2.imread(img_path, cv2.IMREAD_COLOR)# 若读取失败则跳过本次循环if img is None:continue# 图片放大img_amplify = cv2.resize(img, img_size_amplify)# 图片缩小img_reduce = cv2.resize(img, img_size_reduce)# 将放大后的图片写入放大版本的视频video_writer_amplify.write(img_amplify)# 将缩小后的图片写入缩小版本的视频video_writer_reduce.write(img_reduce)print(f"第{i}张图片合成完成")print("视频放大及缩小完成")

基于最近邻插值和双线性插值的图像和视频缩放:

将最近邻插值和双线性插值编写成函数文件,命名为【Nearest_Bilinear】,代码如下:

import numpy as npdef Nearest(img, height, width, channels):# 创建一个与给定高度、宽度和通道数相同的零数组img_nearest = np.zeros(shape=(height, width, channels), dtype=np.uint8)# 遍历每个像素点for i in range(height):for j in range(width):# 计算在给定高度和宽度下对应的img的行和列row = (i / height) * img.shape[0]col = (j / width) * img.shape[1]# 取最近的整数行和列row_near = round(row)col_near = round(col)# 如果行或列到达img的边界,则向前取整if row_near == img.shape[0] or col_near == img.shape[1]:row_near -= 1col_near -= 1# 将最近的像素赋值给img_nearestimg_nearest[i][j] = img[row_near][col_near]# 返回最近映射后的图像return img_nearestdef Bilinear(img, height, width, channels):# 生成一个用于存储bilinear插值结果的零矩阵img_bilinear = np.zeros(shape=(height, width, channels), dtype=np.uint8)# 对矩阵的每一个元素进行插值计算for i in range(0, height):for j in range(0, width):# 计算当前元素所在的行和列的相对位置row = (i / height) * img.shape[0]col = (j / width) * img.shape[1]row_int = int(row)col_int = int(col)# 计算当前元素所在点的权重u = row - row_intv = col - col_int# 判断当前元素是否越界,若是则调整相对位置if row_int == img.shape[0] - 1 or col_int == img.shape[1] - 1:row_int -= 1col_int -= 1# 根据权重进行插值计算img_bilinear[i][j] = (1 - u) * (1 - v) * img[row_int][col_int] + (1 - u) * v * img[row_int][col_int + 1] + u * (1 - v) * img[row_int + 1][col_int] + u * v * img[row_int + 1][col_int + 1]# 返回bilinear插值结果return img_bilinear

 后续在实现图像放缩时导入该函数即可,图像放缩代码如下:

import cv2
import matplotlib.pyplot as plt
from Nearest_Bilinear import *# 读取图像
img = cv2.imread(r"D:\Image\img1.jpg", cv2.IMREAD_COLOR)
# 获取图像的高度、宽度和通道数
height, width, channels = img.shape
print(height, width, channels)# 对图像进行放大操作,增加200个像素的高度
img_nearest_amplify = Nearest(img, height + 200, width, channels)
# 对图像进行缩小操作,减少200个像素的高度
img_nearest_reduce = Nearest(img, height - 200, width, channels)# 创建一个大小为10x10的图像窗口
plt.figure(figsize=(10, 10))
# 在第一个子图中显示原始图像
plt.subplot(1, 3, 1), plt.axis('on'), plt.title("origin")
plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
# 在第二个子图中显示放大后的图像
plt.subplot(1, 3, 2), plt.axis('on'), plt.title("Nearest_amplify")
plt.imshow(cv2.cvtColor(img_nearest_amplify, cv2.COLOR_BGR2RGB))
# 在第三个子图中显示缩小后的图像
plt.subplot(1, 3, 3), plt.axis('on'), plt.title("Nearest_reduce")
plt.imshow(cv2.cvtColor(img_nearest_reduce, cv2.COLOR_BGR2RGB))
plt.tight_layout()
plt.show()# 对图像进行放大操作,增加200个像素的高度
img_bilinear_amplify = Bilinear(img, height + 200, width, channels)
# 对图像进行缩小操作,减少200个像素的高度
img_bilinear_reduce = Bilinear(img, height - 200, width, channels)# 创建一个大小为10x10的图像窗口
plt.figure(figsize=(10, 10))
# 在第一个子图中显示原始图像
plt.subplot(1, 3, 1), plt.axis('on'), plt.title("origin")
plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
# 在第二个子图中显示放大后的图像
plt.subplot(1, 3, 2), plt.axis('on'), plt.title("Bilinear_amplify")
plt.imshow(cv2.cvtColor(img_bilinear_amplify, cv2.COLOR_BGR2RGB))
# 在第三个子图中显示缩小后的图像
plt.subplot(1, 3, 3), plt.axis('on'), plt.title("Bilinear_reduce")
plt.imshow(cv2.cvtColor(img_bilinear_reduce, cv2.COLOR_BGR2RGB))
plt.tight_layout()
plt.show()# 保存图像
retval = cv2.imwrite(r"D:\Image\image_lab2\img_nearest_amplify.jpg", img_nearest_amplify)
retval = cv2.imwrite(r"D:\Image\image_lab2\img_nearest_reduce.jpg", img_nearest_reduce)
retval = cv2.imwrite(r"D:\Image\image_lab2\img_bilinear_amplify.jpg", img_bilinear_amplify)
retval = cv2.imwrite(r"D:\Image\image_lab2\img_bilinear_reduce.jpg", img_bilinear_reduce)

代码运行结果如下:

 基于最近邻插值的视频缩放代码:

import cv2
import os
from Nearest_Bilinear import *video_path = r"D:\Image\image_lab2\video_img"
# 获取视频文件夹中的所有文件
img_files = os.listdir(video_path)
# 统计图片文件数量
img_count = len(img_files)
# 设定视频编解码器
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
# 设定图片大小放大后的目标尺寸
img_size_amplify = (1280, 1280)
# 设定图片大小缩小后的目标尺寸
img_size_reduce = (720, 720)
# 视频保存路径(放大版本)
video_save_amplify = r"D:\Image\image_lab2\video_amplify_Nearest.mp4"
# 视频保存路径(缩小版本)
video_save_reduce = r"D:\Image\image_lab2\video_reduce_Nearest.mp4"
# 创建放大版本的视频写入对象
video_writer_amplify = cv2.VideoWriter(video_save_amplify, fourcc, 60, img_size_amplify)
# 创建缩小版本的视频写入对象
video_writer_reduce = cv2.VideoWriter(video_save_reduce, fourcc, 60, img_size_reduce)
print("视频放大及缩小开始")for i in range(0, img_count):# 设定图片文件路径img_path = video_path + "/" + str(i) + ".jpg"# 读取图片img = cv2.imread(img_path, cv2.IMREAD_COLOR)# 若读取失败则跳过本次循环if img is None:continue# 图片放大img_amplify = Nearest(img, img_size_amplify[0], img_size_amplify[1], 3)# 图片缩小img_reduce = Nearest(img, img_size_reduce[0], img_size_reduce[1], 3)# 将放大后的图片写入放大版本的视频video_writer_amplify.write(img_amplify)# 将缩小后的图片写入缩小版本的视频video_writer_reduce.write(img_reduce)print(f"第{i}张图片合成完成")print("视频放大及缩小完成")

基于双线性插值的视频放缩代码:

import cv2
import os
from Nearest_Bilinear import *video_path = r"D:\Image\image_lab2\video_img"
# 获取视频文件夹中的所有文件
img_files = os.listdir(video_path)
# 统计图片文件数量
img_count = len(img_files)
# 设定视频编解码器
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
# 设定图片大小放大后的目标尺寸
img_size_amplify = (1280, 1280)
# 设定图片大小缩小后的目标尺寸
img_size_reduce = (720, 720)
# 视频保存路径(放大版本)
video_save_amplify = r"D:\Image\image_lab2\video_amplify_Bilinear.mp4"
# 视频保存路径(缩小版本)
video_save_reduce = r"D:\Image\image_lab2\video_reduce_Bilinear.mp4"
# 创建放大版本的视频写入对象
video_writer_amplify = cv2.VideoWriter(video_save_amplify, fourcc, 60, img_size_amplify)
# 创建缩小版本的视频写入对象
video_writer_reduce = cv2.VideoWriter(video_save_reduce, fourcc, 60, img_size_reduce)
print("视频放大及缩小开始")for i in range(0, img_count):# 设定图片文件路径img_path = video_path + "/" + str(i) + ".jpg"# 读取图片img = cv2.imread(img_path, cv2.IMREAD_COLOR)# 若读取失败则跳过本次循环if img is None:continue# 图片放大img_amplify = Bilinear(img, img_size_amplify[0], img_size_amplify[1], 3)# 图片缩小img_reduce = Bilinear(img, img_size_reduce[0], img_size_reduce[1], 3)# 将放大后的图片写入放大版本的视频video_writer_amplify.write(img_amplify)# 将缩小后的图片写入缩小版本的视频video_writer_reduce.write(img_reduce)print(f"第{i}张图片合成完成")print("视频放大及缩小完成")

(2)基于OpenCV的局部图像和视频缩放

局部图像的缩放代码如下:

import cv2
import matplotlib.pyplot as plt# 读取原始图像
img_origin = cv2.imread(r"D:\Image\img1.jpg", cv2.IMREAD_COLOR)
# 获取图像的高度和宽度
height, width = img_origin.shape[:2]
# 定义图像的一部分的坐标范围
y1, y2 = 100, 300
x1, x2 = 100, 300
# 获取图像的一部分
img_part = img_origin[y1:y2, x1:x2]
# 放大图像
img_amplify = cv2.resize(img_part, None, fx=1.25, fy=1.0, interpolation=cv2.INTER_NEAREST)
# 缩小图像
img_reduce = cv2.resize(img_part, None, fx=0.75, fy=1.0, interpolation=cv2.INTER_LINEAR)
# 创建绘图窗口
plt.figure(figsize=(10, 10))
# 绘制图像
plt.subplot(2, 2, 1), plt.axis('on'), plt.title("origin")
plt.imshow(cv2.cvtColor(img_origin, cv2.COLOR_BGR2RGB))
plt.subplot(2, 2, 2), plt.axis('on'), plt.title("part")
plt.imshow(cv2.cvtColor(img_part, cv2.COLOR_BGR2RGB))
plt.subplot(2, 2, 3), plt.axis('on'), plt.title("amplify: fx = 1.25, fy = 1.0")
plt.imshow(cv2.cvtColor(img_amplify, cv2.COLOR_BGR2RGB))
plt.subplot(2, 2, 4), plt.axis('on'), plt.title("reduce: fx = 0.75, fy = 1.0")
plt.imshow(cv2.cvtColor(img_reduce, cv2.COLOR_BGR2RGB))# 调整子图布局
plt.tight_layout()
# 显示图形
plt.show()# 保存图像
retval = cv2.imwrite(r"D:\Image\image_lab2\img_part.jpg", img_part)
retval = cv2.imwrite(r"D:\Image\image_lab2\img_amplify_part.jpg", img_amplify)
retval = cv2.imwrite(r"D:\Image\image_lab2\img_reduce_part.jpg", img_reduce)

局部视频的缩放代码如下:

import cv2
import osvideo_path = r"D:\Image\image_lab2\video_img"
# 获取视频文件夹中的所有文件
img_files = os.listdir(video_path)
# 统计图片文件数量
img_count = len(img_files)
# 设定视频编解码器
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
# 设定图片大小放大后的目标尺寸
img_size_amplify = (720, 720)
# 设定图片大小缩小后的目标尺寸
img_size_reduce = (250, 250)
# 视频保存路径(放大版本)
video_save_amplify = r"D:\Image\image_lab2\video_amplify_part.mp4"
# 视频保存路径(缩小版本)
video_save_reduce = r"D:\Image\image_lab2\video_reduce_part.mp4"
# 创建放大版本的视频写入对象
video_writer_amplify = cv2.VideoWriter(video_save_amplify, fourcc, 60, img_size_amplify)
# 创建缩小版本的视频写入对象
video_writer_reduce = cv2.VideoWriter(video_save_reduce, fourcc, 60, img_size_reduce)
print("视频放大及缩小开始")for i in range(0, img_count):# 设定图片文件路径img_path = video_path + "/" + str(i) + ".jpg"# 读取图片img = cv2.imread(img_path, cv2.IMREAD_COLOR)img = img[100:500, 100:500]# 若读取失败则跳过本次循环if img is None:continue# 图片放大img_amplify = cv2.resize(img, img_size_amplify)# 图片缩小img_reduce = cv2.resize(img, img_size_reduce)# 将放大后的图片写入放大版本的视频video_writer_amplify.write(img_amplify)# 将缩小后的图片写入缩小版本的视频video_writer_reduce.write(img_reduce)print(f"第{i}张图片合成完成")print("视频放大及缩小完成")

基于最近邻插值和双线性插值的局部图像和视频缩放:

局部图像的缩放代码如下:

import cv2
import matplotlib.pyplot as plt
from Nearest_Bilinear import *# 读取图像
img = cv2.imread(r"D:\Image\img1.jpg", cv2.IMREAD_COLOR)
# 获取图像的高度、宽度和通道数
height, width, channels = img.shape
# 定义图像的一部分的坐标范围
y1, y2 = 100, 300
x1, x2 = 100, 300
# 获取图像的一部分
img_part = img[y1:y2, x1:x2]# 对图像进行放大操作,增加100个像素的高度
img_nearest_amplify_part = Nearest(img_part, height + 100, width, channels)
# 对图像进行缩小操作,减少100个像素的高度
img_nearest_reduce_part = Nearest(img_part, height - 100, width, channels)
# 创建一个大小为10x10的图像窗口
plt.figure(figsize=(10, 10))
# 在第一个子图中显示原始图像
plt.subplot(1, 3, 1), plt.axis('on'), plt.title("origin")
plt.imshow(cv2.cvtColor(img_part, cv2.COLOR_BGR2RGB))
# 在第二个子图中显示放大后的图像
plt.subplot(1, 3, 2), plt.axis('on'), plt.title("Nearest_amplify")
plt.imshow(cv2.cvtColor(img_nearest_amplify_part, cv2.COLOR_BGR2RGB))
# 在第三个子图中显示缩小后的图像
plt.subplot(1, 3, 3), plt.axis('on'), plt.title("Nearest_reduce")
plt.imshow(cv2.cvtColor(img_nearest_reduce_part, cv2.COLOR_BGR2RGB))
plt.tight_layout()
plt.show()# 对图像进行放大操作,增加100个像素的高度
img_bilinear_amplify_part = Bilinear(img_part, height + 100, width, channels)
# 对图像进行缩小操作,减少100个像素的高度
img_bilinear_reduce_part = Bilinear(img_part, height - 100, width, channels)
# 创建一个大小为10x10的图像窗口
plt.figure(figsize=(10, 10))
# 在第一个子图中显示原始图像
plt.subplot(1, 3, 1), plt.axis('on'), plt.title("origin")
plt.imshow(cv2.cvtColor(img_part, cv2.COLOR_BGR2RGB))
# 在第二个子图中显示放大后的图像
plt.subplot(1, 3, 2), plt.axis('on'), plt.title("Bilinear_amplify")
plt.imshow(cv2.cvtColor(img_bilinear_amplify_part, cv2.COLOR_BGR2RGB))
# 在第三个子图中显示缩小后的图像
plt.subplot(1, 3, 3), plt.axis('on'), plt.title("Bilinear_reduce")
plt.imshow(cv2.cvtColor(img_bilinear_reduce_part, cv2.COLOR_BGR2RGB))
plt.tight_layout()
plt.show()# 保存图像
retval = cv2.imwrite(r"D:\Image\image_lab2\img_nearest_amplify_part.jpg", img_nearest_amplify_part)
retval = cv2.imwrite(r"D:\Image\image_lab2\img_nearest_reduce_part.jpg", img_nearest_reduce_part)
retval = cv2.imwrite(r"D:\Image\image_lab2\img_bilinear_amplify_part.jpg", img_bilinear_amplify_part)
retval = cv2.imwrite(r"D:\Image\image_lab2\img_bilinear_reduce_part.jpg", img_bilinear_reduce_part)

基于最近邻插值的局部视频缩放代码:

import cv2
import os
from Nearest_Bilinear import *video_path = r"D:\Image\image_lab2\video_img"
# 获取视频文件夹中的所有文件
img_files = os.listdir(video_path)
# 统计图片文件数量
img_count = len(img_files)
# 设定视频编解码器
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
# 设定图片大小放大后的目标尺寸
img_size_amplify = (720, 720)
# 设定图片大小缩小后的目标尺寸
img_size_reduce = (250, 250)
# 视频保存路径(放大版本)
video_save_amplify = r"D:\Image\image_lab2\video_amplify_Nearest_part.mp4"
# 视频保存路径(缩小版本)
video_save_reduce = r"D:\Image\image_lab2\video_reduce_Nearest_part.mp4"
# 创建放大版本的视频写入对象
video_writer_amplify = cv2.VideoWriter(video_save_amplify, fourcc, 60, img_size_amplify)
# 创建缩小版本的视频写入对象
video_writer_reduce = cv2.VideoWriter(video_save_reduce, fourcc, 60, img_size_reduce)
print("视频放大及缩小开始")for i in range(0, img_count):# 设定图片文件路径img_path = video_path + "/" + str(i) + ".jpg"# 读取图片img = cv2.imread(img_path, cv2.IMREAD_COLOR)img = img[100:500, 100:500]# 若读取失败则跳过本次循环if img is None:continue# 图片放大img_amplify = Nearest(img, img_size_amplify[0], img_size_amplify[1], 3)# 图片缩小img_reduce = Nearest(img, img_size_reduce[0], img_size_reduce[1], 3)# 将放大后的图片写入放大版本的视频video_writer_amplify.write(img_amplify)# 将缩小后的图片写入缩小版本的视频video_writer_reduce.write(img_reduce)print(f"第{i}张图片合成完成")print("视频放大及缩小完成")

基于双线性插值的局部视频缩放代码如下:

import cv2
import os
from Nearest_Bilinear import *video_path = r"D:\Image\image_lab2\video_img"
# 获取视频文件夹中的所有文件
img_files = os.listdir(video_path)
# 统计图片文件数量
img_count = len(img_files)
# 设定视频编解码器
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
# 设定图片大小放大后的目标尺寸
img_size_amplify = (720, 720)
# 设定图片大小缩小后的目标尺寸
img_size_reduce = (250, 250)
# 视频保存路径(放大版本)
video_save_amplify = r"D:\Image\image_lab2\video_amplify_Bilinear_part.mp4"
# 视频保存路径(缩小版本)
video_save_reduce = r"D:\Image\image_lab2\video_reduce_Bilinear_part.mp4"
# 创建放大版本的视频写入对象
video_writer_amplify = cv2.VideoWriter(video_save_amplify, fourcc, 60, img_size_amplify)
# 创建缩小版本的视频写入对象
video_writer_reduce = cv2.VideoWriter(video_save_reduce, fourcc, 60, img_size_reduce)
print("视频放大及缩小开始")for i in range(0, img_count):# 设定图片文件路径img_path = video_path + "/" + str(i) + ".jpg"# 读取图片img = cv2.imread(img_path, cv2.IMREAD_COLOR)img = img[100:500, 100:500]# 若读取失败则跳过本次循环if img is None:continue# 图片放大img_amplify = Bilinear(img, img_size_amplify[0], img_size_amplify[1], 3)# 图片缩小img_reduce = Bilinear(img, img_size_reduce[0], img_size_reduce[1], 3)# 将放大后的图片写入放大版本的视频video_writer_amplify.write(img_amplify)# 将缩小后的图片写入缩小版本的视频video_writer_reduce.write(img_reduce)print(f"第{i}张图片合成完成")print("视频放大及缩小完成")

都看到最后了,不点个赞吗?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/271401.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

WPF学习三(MVVM+自定义按钮等的登录界面)

跟着bilibil龙马哥视频做的一个登录界面,个人感觉讲得很到位,适合新手),他是从开始的前后绑定慢慢解耦合到MVVM,让我较快的理解了WPF的基础。 【WPF入门】WPF零基础到精通,从概念到实操,步步提升…

换手机后日记不见了怎么恢复?换手机日记内容同步方法

曾经,我使用的是一款苹果手机,这部手机陪伴了我整整3年。随着时间的推移,手机内存不够用成为了我面临的一个大问题,因此我决定更换一部新手机——这次我选择了OPPO品牌。在更换手机的过程中,我利用手机搬家软件一键同步…

英语四级开始报名了?大学生如何三个月突破四级【文章底部添加进大学生就业交流群】

目录 一、明确考试内容与要求 二、制定合理的复习计划 三、注重听力和阅读能力的提升 四、加强词汇和语法的积累 五、多做真题和模拟题 英语四级考试,对于大多数大学生来说,是检验英语水平的一个重要标准。随着报名时间的来临,许多同学都…

vue3 ref获取子组件显示 __v_skip : true 获取不到组件的方法 怎么回事怎么解决

看代码 问题出现了 当我想要获取这个组件上的方法时 为什么获取不到这个组件上的方法呢 原來: __v_skip: true 是 Vue 3 中的一个特殊属性,用于跳过某些组件的渲染。当一个组件被标记为 __v_skip: true 时,Vue 将不会对该组件进行渲染&am…

开源模型应用落地-工具使用篇-Spring AI-高阶用法(九)

一、前言 通过“开源模型应用落地-工具使用篇-Spring AI-Function Call(八)-CSDN博客”文章的学习,已经掌握了如何通过Spring AI集成OpenAI以及如何进行function call的调用,现在将进一步学习Spring AI更高阶的用法,如…

vscode 使用ssh进行远程开发 (remote-ssh),首次连接及后续使用,详细介绍

在vscode添加remote ssh插件 首次连接 选择左侧栏的扩展,并搜索remote ssh 它大概长这样,点击安装 安装成功后,在左侧栏会出现远程连接的图标,点击后选择ssh旁加号便可以进行连接。 安装成功后vscode左下角会有一个图标 点击图…

08.回调地狱函数及其解决(Promise链式调用)

一.同步代码和异步代码 1. 同步代码: 逐行执行,需原地等待结果后,才继续向下执行 2. 异步代码: 调用后耗时,不阻塞代码继续执行(不必原地等待),在将来完成后触发回调函数传递结果…

Windows上基于名称快速定位文件和文件夹的免费工具Everything

在Windows上搜索文件时,使用windows上内置搜索会很慢,这里推荐使用Everything工具进行搜索。 "Everything"是Windows上一款搜索引擎,它能够基于文件名快速定位文件和文件夹位置。不像Windows内置搜索,"Everything&…

Docker-完整项目的部署(保姆级教学)

目录 1 手动部署(白雪版) 1.1 创建网络 1.2 MySQL的部署 1.2.1 准备 1.2.2 部署 1.3 Java项目的部署 1.3.1 准备 1.3.1.1 将Java项目打成jar包 1.3.1.2 编写Dockerfile文件 1.3.2 部署 1.3.2.1 将jar包、Dockerfile文件放在linux同一个文件夹下 1.3.2.2 构建镜像 …

飞行汽车首飞成功?一文讲解飞行汽车与其代表的立体交通形式

中国的“飞行汽车”从深圳跨越大湾区到珠海首飞成功,既是一次重要尝试,更是交通运输行业发展史中一个全新的起点 关注我,共同交流,一起成长 前言一、基本认识飞行汽车二、发展飞行汽车必要性三、飞行汽车所形成的影响 前言 2月27…

swoole

php是单线程。php是靠多进程来处理任务,任何后端语言都可以采用多进程处理方式。如我们常用的php-fpm进程管理器。线程与协程,大小的关系是进程>线程>协程,而我们所说的swoole让php实现了多线程,其实在这里来说,就是好比让php创建了多个进程,每个进程执行一条…

用云手机进行舆情监测有什么作用?

在信息爆炸的时代,舆情监测成为企业和政府决策的重要工具。通过结合云手机技术,舆情监测系统在品牌形象维护、市场竞争、产品研发、政府管理以及市场营销等方面发挥着关键作用,为用户提供更智能、高效的舆情解决方案。 1. 品牌形象维护与危机…

【数据结构】二、线性表:6.顺序表和链表的对比不同(从数据结构三要素讨论:逻辑结构、物理结构(存储结构)、数据运算(基本操作))

文章目录 6.对比:顺序表&链表6.1逻辑结构6.2物理结构(存储结构)6.2.1顺序表6.2.2链表 6.3数据运算(基本操作)6.3.1初始化6.3.2销毁表6.3.3插入、删除6.3.4查找 6.对比:顺序表&链表 6.1逻辑结构 顺…

提取pdf图档中的物料编码

一、摘要 图1 图档示例 本篇代码目的是从指定文件夹下的PDF文件中提取物料编码等相关信息,并将这些信息存储在列表中输出。这段代码主要实现了以下功能: 定义一个file_name函数,用于获取指定文件夹下所有文件的完整路径。通过遍历文件夹和子文…

CubeMX使用教程(2)——点亮LED

在上一章,我们完成了CubeMX的环境配置,这一章我们通过CubeMX来完成点亮LED的工作。 通过LED原理图可知,如果我们要点亮LD1(第一个灯),它对应开发板的PC8端口,因此我们应该在CubeMX中将PC8配置为…

企业怎么做好数字化转型?

企业进行数字化转型是一个复杂的过程,涉及多个方面和步骤。一些关键点可以帮助企业在数字化转型中取得成功: 1.明确目标和愿景:确定企业数字化转型的目的,这可能包括提高效率、增强客户体验、创造新的收入来源等。设定清晰、可衡…

gradio 摄像头视频流获取

参考:https://github.com/gradio-app/gradio/issues/1490 版本:gradio 4.16.0 gradio_client 0.8.1 import gradio as grgr.Interface(lambda x: x, gr.Image(sourceswebcam, streamingTrue), "image", liveTrue).launch()

预付费电表的应用和预付费平台的操作方式

*、智能预付费电能表的应用分析 1应用功能的分析 这里主要讲的是与远程抄表系统的结合.如图2所示.为系统工作的程序.在远程抄表中,通信方式多种多样.主要有互联网、电话线通信、有线电视通信、光纤通信、GPRS、卫星通…

NLP:自定义模型训练

书接上文,为了完成指定的任务,我们需要额外训练一个特定场景的模型 这里主要参考了这篇博客:大佬的博客 我这里就主要讲一下我根据这位大佬的博客一步一步写下时,遇到的问题: 文中的cfg在哪里下载? 要不…

微信小程序用户登陆和获取用户信息功能实现

官方文档: https://developers.weixin.qq.com/miniprogram/dev/framework/open-ability/login.html 接口说明: https://developers.weixin.qq.com/miniprogram/dev/OpenApiDoc/user-login/code2Session.html 我们看官方这个图,梳理一下用户…