flink重温笔记(十二): flink 高级特性和新特性(1)——End-to-End Exactly-Once(端到端精确一致性语义)

Flink学习笔记

前言:今天是学习 flink 的第 12 天啦!学习了 flink 高级特性和新特性之 End-to-End Exactly-Once(端到端精确一致性语义),主要是解决大数据领域数据从数据源到数据落点的一致性,不会容易造成数据丢失的问题,结合自己实验猜想和代码实践,总结了很多自己的理解和想法,希望和大家多多交流!

Tips:端到端的一致性语义,说明每一步都算术,每一天的努力都不会白费,明天也要继续努力!


文章目录

  • Flink学习笔记
    • 四、Flink 高级特性和新特性
      • 1. End-to-End Exactly-Once
        • 1.1 流处理的数据语义
          • 1.1.1 At most once(最多一次)
          • 1.1.2 At least once(至少一次)
          • 1.1.3 Exactly once(精确一次)
          • 1.1.4 End to End Exactly once(端到端精确一次)
          • 1.1.5 流计算系统如何支持一次性语义
            • (1) At least once + 去重
            • (2) At least once + 幂等
            • (3) 分布式快照
            • (4) 方法汇总
        • 1.2 End-to-End Exactly-Once 实现
          • 1.2.1 Source
          • 1.2.2 Transformation
          • 1.2.3 sink
        • 1.3 Flink + Kafka 的 End-to-End Exactly Once
          • 1.3.1 版本声明
          • 1.3.2 两阶段提交-API
          • 1.3.3 两阶段提交-流程
        • 1.4 案例演示
          • 1.4.1 Flink + Kafka 实现 End-to-End Exactly Once
          • 1.4.2 Flink + MySQL 实现 End-to-End Exactly Once

四、Flink 高级特性和新特性

1. End-to-End Exactly-Once

1.1 流处理的数据语义

顺序:At most once(最多一次)< At least once(至少一次)< Exactly once(精确一次)< End to End Exactly once(端到端一次)


1.1.1 At most once(最多一次)

最简单的恢复方式,直接从失败的下个数据恢复程序,丢失刚刚失败的数据。


1.1.2 At least once(至少一次)

由于事件是可以重传的,可能造成数据重复。


1.1.3 Exactly once(精确一次)

依赖 checkpoint 机制,回滚恢复数据,保持所有记录仅影响内部状态一次,即不考虑部分数据泄露到下游。


1.1.4 End to End Exactly once(端到端精确一次)

Flink 应用从 Source 端开始到 Sink 端结束,保持所有记录影响内部和外部状态一次,即考虑部分数据泄露到下游。


1.1.5 流计算系统如何支持一次性语义
(1) At least once + 去重


(2) At least once + 幂等


(3) 分布式快照


(4) 方法汇总
Exactly Once 实现方式优点缺点
At least once + 去重1. 故障对性能的影响是局部的;
2. 故障的影响不一定随着拓扑大小而增加
1. 可能需要大量的存储和基础设施来支持;
2. 每个算子的每个事件都有资源开销
At least once + 幂等1. 实现简单,开销较低1. 依赖存储特性和数据特征
分布式快照1. 较小的性能和资源开销1. barrier 同步;
2. 任何算子发生故障都需要全局暂停和状态回滚;
3. 拓扑越大,对性能的潜在影响越大

1.2 End-to-End Exactly-Once 实现
1.2.1 Source

发生故障时需要支持重设数据的读取位置,如Kafka可以通过offset来实现(其他的没有offset系统,可以自己实现累加器计数)


1.2.2 Transformation
  • 分布式快照机制

    • 同 Spark 相比,Spark 仅仅是针对 Driver 的故障恢复 Checkpoint,
    • 而 Flink 的快照可以到算子级别,并且对全局数据也可以做快照,
    • Flink 的分布式快照受到 Chandy-Lamport 分布式快照算法启发,同时进行了量身定做。
  • Barrier

    • 数据栅栏是一个标记,不会干扰正常数据处理,
    • 一个数据源可以有多个 barrier,
    • 多个数据源,快流等慢流。
  • 异步和增量

    • 异步快照不会阻塞任务,
    • 增量快照,每次进行的全量快照是根据上一次更新的。

1.2.3 sink
  • 幂等写入

    • 任意多次向一个系统写入数据,只对目标系统产生一次结果影响。
    • key,和 value 可以控制不重复
  • 事务写入

    • 借鉴数据库的事务机制,结合自身 checkpoint 机制,

    • 分阶段快照,先保存数据不向外部系统提交,checkpoint 确认过上下游一致后,才向外部系统 commit。

    • 实现方式:

      • 1- 预写日志(Write-Ahead-Log,WAL)

        通用性强,但不能保证百分比,因为要写入内存这个易失介质。

      • 2- 两阶段提交(Two-Phase-Commit,2PC)

        如果外部系统自身支持事务(比如MySQL、Kafka),可以使用2PC方式,百分百端到端的Exactly-Once。

    • 缺点:

      • 牺牲了延迟
      • 输出不是实时写入,而是分批写入

1.3 Flink + Kafka 的 End-to-End Exactly Once
1.3.1 版本声明

Flink 1.4 版本之前,支持 Exactly Once 语义,仅限于应用内部。

Flink 1.4 版本之后,通过两阶段提交 (TwoPhaseCommitSinkFunction) 支持 End-To-End Exactly Once,而且要求 Kafka 0.11+。


1.3.2 两阶段提交-API

实现方法封装在抽象类:TwoPhaseCommitSinkFunction ,重写方法:

  • beginTransaction:

    开启事务前,在目标文件系统的临时目录中创建一个临时文件,处理数据时将数据写入此文件;

  • preCommit:

    在预提交阶段,刷写(flush)文件,然后关闭文件,之后就不能写入到文件了,将为下一检查点的任何后续写入启动新事务;

  • commit:

    在提交阶段,将预提交的文件原子性移动到真正的目标目录中,注意,会增加输出数据可见性的延迟;

  • abort:

    在中止阶段,删除临时文件。


1.3.3 两阶段提交-流程
  • 1- 数据源阶段

    对接数据源系统

  • 2- 预提交阶段(pre-commit)-内部状态

    Flink 开始 checkpoint,就会进入 pre-commit 阶段,同时 JobManager 的 Coordinator 会将 Barrier 注入数据流中

  • 3- 预提交阶段(pre-commit)-外部状态

    当所有的 barrier 在算子中成功进行一遍传递(就是 Checkpoint 完成),并完成快照后,则“预提交”阶段完成;

  • 4- commit 阶段

    所有算子完成“预提交”,就会发起一个commit“提交”动作,任何一个“预提交”失败都会回滚到最近的 checkpoint;


1.4 案例演示
1.4.1 Flink + Kafka 实现 End-to-End Exactly Once

例子1:普通方式——内部一致性语义,重点在生产者 API 设置上,只是简单序列化为字节流 SimpleStringSchema

package cn.itcast.day12.endtoend;import org.apache.commons.lang3.SystemUtils;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.runtime.state.hashmap.HashMapStateBackend;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;
import org.apache.flink.streaming.connectors.kafka.internals.KafkaSerializationSchemaWrapper;
import org.apache.flink.streaming.connectors.kafka.internals.KeyedSerializationSchemaWrapper;
import org.apache.flink.util.Collector;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.producer.ProducerConfig;import java.util.Properties;/*** @author lql* @time 2024-03-07 14:51:04* @description TODO:topic:test3 终端生产生数据,控制台打印 topic:test4数据*/
public class Kafka_Flink_Kafka_EndToEnd_ExactlyOnce {public static void main(String[] args) throws Exception {//todo 1)初始化flink流处理环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.enableCheckpointing(5000);//todo 2)判断当前的环境env.setStateBackend(new HashMapStateBackend());if(SystemUtils.IS_OS_WINDOWS || SystemUtils.IS_OS_MAC){env.getCheckpointConfig().setCheckpointStorage("file:///D:\\checkpoint");}else{env.getCheckpointConfig().setCheckpointStorage(args[0]);}//todo 3)设置checkpoint的其他参数//设置checkpoint的超时时间env.getCheckpointConfig().setCheckpointTimeout(2000L);//同一个时间只能有一个栅栏在运行env.getCheckpointConfig().setMaxConcurrentCheckpoints(1);//设置checkpoint的执行模式。仅执行一次env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);//设置checkpoint最小时间间隔env.getCheckpointConfig().setMinPauseBetweenCheckpoints(1000L);//todo 4)接入数据源//指定topic的名称String topicName = "test";//实例化kafkaConsumer对象Properties props = new Properties();props.setProperty(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "node1:9092");props.setProperty(ConsumerConfig.GROUP_ID_CONFIG, "test001");props.setProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "latest"); // 消费最新的数据props.setProperty(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "true"); // 自动提交偏移量offsetprops.setProperty(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "2000"); // 提交偏移量的时间间隔props.setProperty("flink.partition-discovery.interval-millis", "5000");//开启一个后台线程每隔5s检测一次kafka的分区情况FlinkKafkaConsumer<String> kafkaSource = new FlinkKafkaConsumer<>(topicName, new SimpleStringSchema(), props);//在开启checkpoint以后,offset的递交会随着checkpoint的成功而递交,从而实现一致性语义,默认就是truekafkaSource.setCommitOffsetsOnCheckpoints(true);DataStreamSource<String> kafkaDS = env.addSource(kafkaSource);//todo 5)单词计数操作SingleOutputStreamOperator<Tuple2<String, Integer>> wordAndOne = kafkaDS.flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() {@Overridepublic void flatMap(String value, Collector<Tuple2<String, Integer>> out) throws Exception {String[] words = value.split(" ");for (String word : words) {out.collect(Tuple2.of(word, 1));}}});//todo 6)单词分组操作SingleOutputStreamOperator<Tuple2<String, Integer>> result_1 = wordAndOne.keyBy(t -> t.f0).sum(1);//todo 7)打印计算结果result_1.print();SingleOutputStreamOperator<String> result = result_1.map(new MapFunction<Tuple2<String, Integer>, String>() {@Overridepublic String map(Tuple2<String, Integer> value) throws Exception {return value.f0 + "_" + value.f1;}});result.printToErr();//todo 8)创建kafka的生产者实例//指定topic的名称String distTopicName = "test1";//实例化FlinkKafkaProducer对象Properties distProps = new Properties();distProps.setProperty(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "node1:9092");FlinkKafkaProducer<String> myProducer = new FlinkKafkaProducer<String>(distTopicName,new SimpleStringSchema(),distProps);// 容错//todo 4)将数据写入到kafkaresult.addSink(myProducer);//todo 8)启动作业env.execute();}
}

结果:在 node1 的 kafka 生产者模式终端输入数据到 test,词频统计结果写入到 topic:test1,但不保证外部一致性语义


例子2:超级方式——内部外部一致性语义

package cn.itcast.day12.endtoend;import org.apache.commons.lang3.SystemUtils;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.runtime.state.hashmap.HashMapStateBackend;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;
import org.apache.flink.streaming.connectors.kafka.internals.KeyedSerializationSchemaWrapper;
import org.apache.flink.util.Collector;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.producer.ProducerConfig;import java.util.Properties;/*** @author lql* @time 2024-03-07 14:51:04* @description TODO:topic:test3 终端生产生数据,控制台打印 topic:test4数据*/
public class Kafka_Flink_Kafka_EndToEnd_ExactlyOnce_pro {public static void main(String[] args) throws Exception {//todo 1)初始化flink流处理环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();// 在这里就不能开启了,因为 kafka//env.enableCheckpointing(5000);//todo 2)判断当前的环境env.setStateBackend(new HashMapStateBackend());if(SystemUtils.IS_OS_WINDOWS || SystemUtils.IS_OS_MAC){env.getCheckpointConfig().setCheckpointStorage("file:///D:\\checkpoint");}else{env.getCheckpointConfig().setCheckpointStorage(args[0]);}//todo 3)设置checkpoint的其他参数//设置checkpoint的超时时间env.getCheckpointConfig().setCheckpointTimeout(2000L);//同一个时间只能有一个栅栏在运行env.getCheckpointConfig().setMaxConcurrentCheckpoints(1);//设置checkpoint的执行模式。仅执行一次env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);//设置checkpoint最小时间间隔env.getCheckpointConfig().setMinPauseBetweenCheckpoints(1000L);//todo 4)接入数据源//指定topic的名称String topicName = "test";//实例化kafkaConsumer对象Properties props = new Properties();props.setProperty(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "node1:9092");props.setProperty(ConsumerConfig.GROUP_ID_CONFIG, "test001");props.setProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "latest"); // 消费最新的数据props.setProperty(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "true"); // 自动提交偏移量offsetprops.setProperty(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "2000"); // 提交偏移量的时间间隔props.setProperty("flink.partition-discovery.interval-millis", "5000");//开启一个后台线程每隔5s检测一次kafka的分区情况FlinkKafkaConsumer<String> kafkaSource = new FlinkKafkaConsumer<>(topicName, new SimpleStringSchema(), props);//在开启checkpoint以后,offset的递交会随着checkpoint的成功而递交,从而实现一致性语义,默认就是truekafkaSource.setCommitOffsetsOnCheckpoints(true);DataStreamSource<String> kafkaDS = env.addSource(kafkaSource);//todo 5)单词计数操作SingleOutputStreamOperator<Tuple2<String, Integer>> wordAndOne = kafkaDS.flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() {@Overridepublic void flatMap(String value, Collector<Tuple2<String, Integer>> out) throws Exception {String[] words = value.split(" ");for (String word : words) {out.collect(Tuple2.of(word, 1));}}});//todo 6)单词分组操作SingleOutputStreamOperator<Tuple2<String, Integer>> result_1 = wordAndOne.keyBy(t -> t.f0).sum(1);//todo 7)打印计算结果result_1.print();SingleOutputStreamOperator<String> result = result_1.map(new MapFunction<Tuple2<String, Integer>, String>() {@Overridepublic String map(Tuple2<String, Integer> value) throws Exception {return value.f0 + "_" + value.f1;}});result.printToErr();//todo 8)创建kafka的生产者实例//指定topic的名称String distTopicName = "test1";//实例化FlinkKafkaProducer对象Properties distProps = new Properties();distProps.setProperty(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "node1:9092");FlinkKafkaProducer<String> myProducer = new FlinkKafkaProducer<String>(distTopicName,new KeyedSerializationSchemaWrapper<String>(new SimpleStringSchema()),distProps,FlinkKafkaProducer.Semantic.EXACTLY_ONCE);//todo 4)将数据写入到kafkaresult.addSink(myProducer);//todo 8)启动作业env.execute();}
}

结果:在 node1 的 kafka 生产者模式终端输入数据到 test,词频统计结果写入到 topic:test1,保证了内外部一致性语义

总结:

  • 在普通模式设置下,需要提前开启 checkpoint 模式
  • 在超级模式设置下,不要提前开启 checkpoint 模式,不然写不进数据
  • 在超级模式设置下,不是简单序列化而是事务写入:
    • new KeyedSerializationSchemaWrapper(new SimpleStringSchema()),
    • FlinkKafkaProducer.Semantic.EXACTLY_ONCE

1.4.2 Flink + MySQL 实现 End-to-End Exactly Once

例子:读取 socket 数据,写入 MySQL 数据库,删除数据库数据,也能继续累加结果,实现端到端一致性。

SQL建表:

create table test.t_wordcount
(word   varchar(255) not null primary key,counts int default 0 null
);

代码:

package cn.itcast.day12.endtoend;import org.apache.commons.lang3.SystemUtils;
import org.apache.flink.api.common.ExecutionConfig;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.typeutils.base.VoidSerializer;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.typeutils.runtime.kryo.KryoSerializer;
import org.apache.flink.runtime.state.hashmap.HashMapStateBackend;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.sink.TwoPhaseCommitSinkFunction;
import org.apache.flink.util.Collector;import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.SQLException;public class Kafka_Flink_MySQL_EndToEnd_ExactlyOnce {public static void main(String[] args) throws Exception {//todo 1)初始化flink流处理环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(1);//todo 2)如果实现端对端一次性语义,必须要开启checkpointenv.enableCheckpointing(5000L);//todo 3)判断当前的环境env.setStateBackend(new HashMapStateBackend());if(SystemUtils.IS_OS_WINDOWS || SystemUtils.IS_OS_MAC){env.getCheckpointConfig().setCheckpointStorage("file:///D:\\checkpoint");}else{env.getCheckpointConfig().setCheckpointStorage(args[0]);}//todo 4)设置checkpoint的其他参数//设置checkpoint的超时时间env.getCheckpointConfig().setCheckpointTimeout(2000L);//同一个时间只能有一个栅栏在运行env.getCheckpointConfig().setMaxConcurrentCheckpoints(1);//设置checkpoint的执行模式。仅执行一次env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);//设置checkpoint最小时间间隔env.getCheckpointConfig().setMinPauseBetweenCheckpoints(1000L);//todo 5)接入数据源,读取文件获取数据DataStreamSource<String> lines = env.socketTextStream("node1", 9999);//todo 3)数据处理//  3.1:使用flatMap对单词进行拆分SingleOutputStreamOperator<String> words = lines.flatMap(new FlatMapFunction<String, String>() {@Overridepublic void flatMap(String line, Collector<String> out) throws Exception {String[] words = line.split(" ");//返回数据for (String word : words) {out.collect(word);}}});//  3.2:对拆分后的单词进行记一次数SingleOutputStreamOperator<Tuple2<String, Integer>> wordAndOne = words.map(new MapFunction<String, Tuple2<String, Integer>>() {@Overridepublic Tuple2<String, Integer> map(String word) throws Exception {return Tuple2.of(word, 1);}});//  3.3:使用分组算子对key进行分组KeyedStream<Tuple2<String, Integer>, String> grouped = wordAndOne.keyBy(t -> t.f0);//  3.4:对分组后的key进行聚合操作SingleOutputStreamOperator<Tuple2<String, Integer>> sumed = grouped.sum(1);//todo 6)将消费到的数据实时写入mysqlsumed.addSink(new MysqlTwoPhaseCommitSink());//todo 7)运行作业env.execute();}/*** 通过两端递交的方式实现数据写入mysql*/public static class MysqlTwoPhaseCommitSink extends TwoPhaseCommitSinkFunction<Tuple2<String, Integer>, ConnectionState, Void> {public MysqlTwoPhaseCommitSink() {super(new KryoSerializer<>(ConnectionState.class, new ExecutionConfig()), VoidSerializer.INSTANCE);}/*** 每条数据执行一次该方法* @param connectionState* @param value* @param context* @throws Exception*/@Overrideprotected void invoke(ConnectionState connectionState, Tuple2<String, Integer> value, Context context) throws Exception {System.err.println("start invoke.......");Connection connection = connectionState.connection;// 插入一条记录,但如果该记录的主键或唯一键已经存在,则更新该记录。PreparedStatement pstm = connection.prepareStatement("INSERT INTO t_wordcount (word, counts) VALUES (?, ?) ON DUPLICATE KEY UPDATE counts = ?");pstm.setString(1, value.f0);pstm.setInt(2, value.f1);pstm.setInt(3, value.f1);// 插入数据一定是 executeUpdatepstm.executeUpdate();pstm.close();//手动制造异常if(value.f0.equals("hive")) {System.out.println(1/0);}}/*** 开启事务* @return* @throws Exception*/@Overrideprotected ConnectionState beginTransaction() throws Exception {System.out.println("=====> beginTransaction... ");Class.forName("com.mysql.jdbc.Driver");//closing inbound before receiving peer's close_notify,链接地址中追加参数:useSSL=falseConnection connection = DriverManager.getConnection("jdbc:mysql://node1:3306/test?characterEncoding=UTF-8&useSSL=false", "root", "123456");connection.setAutoCommit(false);return new ConnectionState(connection);}/*** 预递交* @param connectionState* @throws Exception*/@Overrideprotected void preCommit(ConnectionState connectionState) throws Exception {System.out.println("start preCommit...");}/*** 递交操作* @param connectionState*/@Overrideprotected void commit(ConnectionState connectionState) {System.out.println("start transaction...");Connection connection = connectionState.connection;try {connection.commit();connection.close();} catch (SQLException e) {throw new RuntimeException("提交事物异常");}}/*** 回滚操作* @param connectionState*/@Overrideprotected void abort(ConnectionState connectionState) {System.out.println("start abort...");Connection connection = connectionState.connection;try {connection.rollback();connection.close();} catch (SQLException e) {throw new RuntimeException("回滚事物异常");}}}static class ConnectionState {// transient 的变量能被忽略序列化private final transient Connection connection;ConnectionState(Connection connection) {this.connection = connection;}}
}

结果:mysql 数据库中删除数据后,再次添加数据后,仍会叠加数据。

总结:

  • 1- 两段递交:自定义 sink 中 需要继承 TwoPhaseCommitSinkFunction
  • 2- kyro 序列化连接状态,VoidSerializer 需要接上 INSTANCE 作为 Void 的序列化
  • 3- 开启事务时,要放弃自动提交
  • 4- transient 的变量能被忽略序列化,此处用于连接变量
  • 5- 数据库插入计算时,要使用 executeUpdate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/271931.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python编程实验六:面向对象应用

目录 一、实验目的与要求 二、实验内容 三、主要程序清单和程序运行结果 第1题 第2题 四、实验结果分析与体会 一、实验目的与要求 &#xff08;1&#xff09;通过本次实验&#xff0c;学生应掌握类的定义与对象的创建、类的继承与方法的覆盖&#xff1b; &#xff08;2…

基于SSM技术的分布式销售平台设计与实现

目 录 摘 要 I Abstract II 1 绪论 1 1.1 课题研究背景与意义 1 1.2 国内外研究现状 1 1.2.1 国外研究现状 1 1.2.2 国内研究现状 2 1.3 本章小结 2 2 工程开发技术介绍 3 2.1 Web前端技术栈 3 2.1.1 HTML&CSS 3 2.1.2 jQuery 3 2.1.3 JSP 3 2.2 服务端开发技术栈 3 2.2.1…

【Linux】第一个小程序--进度条

这篇博客要综合利用以前的知识&#xff0c;来实现一个进度条程序~ 目录 换行&回车 缓冲区 实现简单的倒计时 实现进度条 version1 version2 在开始写这个小程序之前&#xff0c;我们先学习一些预备知识&#xff1a; 换行&回车 缓冲区 在我们运行这个程序时&…

基于R语言lavaan结构方程模型(SEM)技术应用

结构方程模型&#xff08;Sructural Equation Modeling&#xff0c;SEM&#xff09;是分析系统内变量间的相互关系的利器&#xff0c;可通过图形化方式清晰展示系统中多变量因果关系网&#xff0c;具有强大的数据分析功能和广泛的适用性&#xff0c;是近年来生态、进化、环境、…

Mysql中的MVCC

”真正学会&#xff0c;如你般自由~“ MVCC机制简介 MVCC(Multi-Version-Concurrency-Control)多版本并发控制&#xff0c;MVCC 是一种并发控制的方法&#xff0c;一般在数据库管理系统中&#xff0c;实现对数据库的并发访问&#xff1b;在编程中实现事务内存。 取自 MVCC存在被…

图片编辑器tui-image-editor

提示&#xff1a;图片编辑器tui-image-editor 文章目录 前言一、安装tui-image-editor二、新建components/ImageEditor.vue三、修改App.vue四、效果五、遇到问题 this.getResolve is not a function总结 前言 需求&#xff1a;图片编辑器tui-image-editor 一、安装tui-image-ed…

【李沐精读系列】GPT、GPT-2和GPT-3论文精读

论文&#xff1a; GPT&#xff1a;Improving Language Understanding by Generative Pre-Training GTP-2&#xff1a;Language Models are Unsupervised Multitask Learners GPT-3&#xff1a;Language Models are Few-Shot Learners 参考&#xff1a;GPT、GPT-2、GPT-3论文精读…

javaSE-----继承和多态

目录 一.初识继承&#xff1a; 1.1什么是继承&#xff0c;为什么需要继承&#xff1a; 1.2继承的概念与语法&#xff1a; 二.成员的访问&#xff1a; 2.1super关键字 2.2this和super的区别&#xff1a; 三.再谈初始化: 小结&#xff1a; 四.初识多态&#xff1a; 4.1多…

100. 相同的树

代码实现&#xff1a; /*** Definition for a binary tree node.* struct TreeNode {* int val;* struct TreeNode *left;* struct TreeNode *right;* };*/ bool compare(struct TreeNode *tree1, struct TreeNode *tree2) {if (tree1 NULL && tree2 ! NU…

防御保护第七次作业-IPSEC VPPN实验

&#xff08;场景选用点到点&#xff0c;配置好FW1的出接口地址和对端FW3的接口地址&#xff0c;认证方式选用预共享密钥&#xff0c;身份认证选用IP地址&#xff09; 1、FW1 IP Sec策略配置 IKE参数配置&#xff1a; IP Sec参数&#xff1a; FW2配置&#xff1a; 加密数据流配…

SpringBoot 热部署。

SpringBoot 热部署。 文章目录 SpringBoot 热部署。 pom.xml。 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-devtools</artifactId><scope>runtime</scope><optional>true</optional…

Jmeter二次开发实现rsa加密

jmeter函数助手提供了大量的函数&#xff0c;像 counter、digest、random、split、strLen&#xff0c;这些函数在接口测试、性能测试中大量被使用&#xff0c;但是大家在实际工作&#xff0c;形形色色的测试需求不同&#xff0c;导致jmeter自带或者扩展插件给我们提供的函数无法…

React-子传父

1.概念 说明&#xff1a;React中子组件向父组件传递数据通常涉及回调函数和状态提升等方法。 2.代码实现 2.1绑定事件 说明&#xff1a;父组件绑定自定义事件 <Son onGetSonMsg{getMsg}></Son> 2.2接受事件 说明&#xff1a;子组件接受父组件的自定义事件名称…

数据结构与算法-插值查找

引言 在计算机科学的广阔天地中&#xff0c;数据结构和算法扮演着至关重要的角色。它们优化了信息处理的方式&#xff0c;使得我们在面对海量数据时能够高效、准确地进行检索与分析。本文将聚焦于一种基于有序数组且利用元素分布规律的查找算法——插值查找&#xff08;Interpo…

tomcat基础介绍

目录 一、Tomcat的基本介绍 1、Tomcat是什么&#xff1f; 2、Tomcat的配置文件详解 3、Tomcat的构成组件 6、Tomcat的请求过程 一、Tomcat的基本介绍 1、Tomcat是什么&#xff1f; Tomcat 服务器是一个免费的开放源代码的Web 应用服务器&#xff0c;属于轻量级应用服务器…

C++核心编程之内存分区模型,引用,函数提高

1&#xff0c;类型分区模型 c程序在执行中&#xff0c;将内存大方向划分为4个区域 1&#xff0c;代码区&#xff1a;存放函数体的二进制代码&#xff0c;由操作系统进行管理的 2&#xff0c;全局区&#xff1a;存放全局变量和静态变量以及常量 3&#xff0c;栈区&#xff1…

【性能测试】Jmeter性能压测-阶梯式/波浪式场景总结(详细)

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 1、阶梯式场景&am…

IDEA中四款代码补全的插件

说明&#xff1a;本文介绍四款IDEA中代码补全的插件及使用感受&#xff0c;插件如下&#xff1a; 以下插件都在2023.2版本的IDEA中安装使用的&#xff0c;旧版本IDEA可能无法使用。 Tabnine 在IDEA的插件商店中安装&#xff0c;官网&#xff08;https://www.tabnine.com/&…

ai智能写作软件推荐,ai一键生成作文

很多小伙伴们都觉得写作是一件让人头痛的事情。因为不仅要让自己的文字流畅有条理&#xff0c;还需要通过一些修辞手法来使文章更加生动有趣。市场上不断涌现出各种各样的AI人工智能原创文章写作平台&#xff0c;哪些才好用&#xff0c;才是适合自己的呢&#xff1f; 爱制作ai …

Z Potentials | 星爵,他的征途不止向量数据库

纵观过去几十年的科技发展史&#xff0c;每一代新的技术架构的出现往往都伴随着新的数据范式的出现&#xff0c;也催生了多家百亿到千亿美金数据平台的诞生。如果说 2023 年科技领域的关键词是 LLM&#xff0c;那么数据库领域的关键词一定非向量数据库莫属。向量数据库是一种专…