elasticsearch篇

1.初识elasticsearch

1.1.了解ES

1.1.1.elasticsearch的作用

elasticsearch是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助我们从海量数据中快速找到需要的内容

例如:

在电商网站搜索商品

在百度搜索答案

在打车软件搜索附近的车

1.1.2.ELK技术栈

elasticsearch结合kibana、Logstash、Beats,也就是elastic stack(ELK)。被广泛应用在日志数据分析、实时监控等领域:

而elasticsearch是elastic stack的核心,负责存储、搜索、分析数据。

1.1.3.elasticsearch和lucene

elasticsearch底层是基于lucene来实现的。

Lucene是一个Java语言的搜索引擎类库,是Apache公司的顶级项目,由DougCutting于1999年研发。官网地址:Apache Lucene - Welcome to Apache Lucene 。

elasticsearch的发展历史:

  • 2004年Shay Banon基于Lucene开发了Compass

  • 2010年Shay Banon 重写了Compass,取名为Elasticsearch。

1.1.4.为什么不是其他搜索技术?

目前比较知名的搜索引擎技术排名:

虽然在早期,Apache Solr是最主要的搜索引擎技术,但随着发展elasticsearch已经渐渐超越了Solr,独占鳌头:

1.1.5.总结

什么是elasticsearch?

  • 一个开源的分布式搜索引擎,可以用来实现搜索、日志统计、分析、系统监控等功能

什么是elastic stack(ELK)?

  • 是以elasticsearch为核心的技术栈,包括beats、Logstash、kibana、elasticsearch

什么是Lucene?

  • 是Apache的开源搜索引擎类库,提供了搜索引擎的核心API

1.2.倒排索引

倒排索引的概念是基于MySQL这样的正向索引而言的。

1.2.1.正向索引

那么什么是正向索引呢?例如给下表(tb_goods)中的id创建索引:

如果是根据id查询,那么直接走索引,查询速度非常快。

但如果是基于title做模糊查询,只能是逐行扫描数据,流程如下:

1)用户搜索数据,条件是title符合"%手机%"

2)逐行获取数据,比如id为1的数据

3)判断数据中的title是否符合用户搜索条件

4)如果符合则放入结果集,不符合则丢弃。回到步骤1

逐行扫描,也就是全表扫描,随着数据量增加,其查询效率也会越来越低。当数据量达到数百万时,就是一场灾难。

1.2.2.倒排索引

倒排索引中有两个非常重要的概念:

  • 文档(Document):用来搜索的数据,其中的每一条数据就是一个文档。例如一个网页、一个商品信息

  • 词条(Term):对文档数据或用户搜索数据,利用某种算法分词,得到的具备含义的词语就是词条。例如:我是中国人,就可以分为:我、是、中国人、中国、国人这样的几个词条

创建倒排索引是对正向索引的一种特殊处理,流程如下:

  • 将每一个文档的数据利用算法分词,得到一个个词条

  • 创建表,每行数据包括词条、词条所在文档id、位置等信息

  • 因为词条唯一性,可以给词条创建索引,例如hash表结构索引

如图:

倒排索引的搜索流程如下(以搜索"华为手机"为例):

1)用户输入条件"华为手机"进行搜索。

2)对用户输入内容分词,得到词条:华为手机

3)拿着词条在倒排索引中查找,可以得到包含词条的文档id:1、2、3。

4)拿着文档id到正向索引中查找具体文档。

如图:

虽然要先查询倒排索引,再查询正向索引,但是无论是词条、还是文档id都建立了索引,查询速度非常快!无需全表扫描。

1.2.3.正向和倒排

那么为什么一个叫做正向索引,一个叫做倒排索引呢?

  • 正向索引是最传统的,根据id索引的方式。但根据词条查询时,必须先逐条获取每个文档,然后判断文档中是否包含所需要的词条,是根据文档找词条的过程

  • 倒排索引则相反,是先找到用户要搜索的词条,根据词条得到保护词条的文档的id,然后根据id获取文档。是根据词条找文档的过程

是不是恰好反过来了?

那么两者方式的优缺点是什么呢?

正向索引

  • 优点:

    • 可以给多个字段创建索引

    • 根据索引字段搜索、排序速度非常快

  • 缺点:

    • 根据非索引字段,或者索引字段中的部分词条查找时,只能全表扫描。

倒排索引

  • 优点:

    • 根据词条搜索、模糊搜索时,速度非常快

  • 缺点:

    • 只能给词条创建索引,而不是字段

    • 无法根据字段做排序

1.3.es的一些概念

elasticsearch中有很多独有的概念,与mysql中略有差别,但也有相似之处。

1.3.1.文档和字段

elasticsearch是面向文档(Document)存储的,可以是数据库中的一条商品数据,一个订单信息。文档数据会被序列化为json格式后存储在elasticsearch中:

而Json文档中往往包含很多的字段(Field),类似于数据库中的列。

1.3.2.索引和映射

索引(Index),就是相同类型的文档的集合。

例如:

  • 所有用户文档,就可以组织在一起,称为用户的索引;

  • 所有商品的文档,可以组织在一起,称为商品的索引;

  • 所有订单的文档,可以组织在一起,称为订单的索引;

因此,我们可以把索引当做是数据库中的表。

数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射(mapping),是索引中文档的字段约束信息,类似表的结构约束。

1.3.3.mysql与elasticsearch

我们统一的把mysql与elasticsearch的概念做一下对比:

MySQLElasticsearch说明
TableIndex索引(index),就是文档的集合,类似数据库的表(table)
RowDocument文档(Document),就是一条条的数据,类似数据库中的行(Row),文档都是JSON格式
ColumnField字段(Field),就是JSON文档中的字段,类似数据库中的列(Column)
SchemaMappingMapping(映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构(Schema)
SQLDSLDSL是elasticsearch提供的JSON风格的请求语句,用来操作elasticsearch,实现CRUD

是不是说,我们学习了elasticsearch就不再需要mysql了呢?

并不是如此,两者各自有自己的擅长支出:

  • Mysql:擅长事务类型操作,可以确保数据的安全和一致性

  • Elasticsearch:擅长海量数据的搜索、分析、计算

因此在企业中,往往是两者结合使用:

  • 对安全性要求较高的写操作,使用mysql实现

  • 对查询性能要求较高的搜索需求,使用elasticsearch实现

  • 两者再基于某种方式,实现数据的同步,保证一致性

1.4.安装es、kibana

1.4.1.安装

参考如下:

1.4.1.1 部署单节点es

先创建网络:

因为我们还需要部署kibana容器,因此需要让es和kibana容器互联。这里先创建一个网络:

docker network create es-net

再加载镜像

这里我们采用elasticsearch的7.12.1版本的镜像

同理还有kibana的tar包也需要这样做。

然后docker命令,部署单点es:

docker run -d \--name es \-e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \-e "discovery.type=single-node" \-v es-data:/usr/share/elasticsearch/data \-v es-plugins:/usr/share/elasticsearch/plugins \--privileged \--network es-net \-p 9200:9200 \-p 9300:9300 \
elasticsearch:7.12.1

命令解释:

  • -e "cluster.name=es-docker-cluster":设置集群名称

  • -e "http.host=0.0.0.0":监听的地址,可以外网访问

  • -e "ES_JAVA_OPTS=-Xms512m -Xmx512m":内存大小

  • -e "discovery.type=single-node":非集群模式

  • -v es-data:/usr/share/elasticsearch/data:挂载逻辑卷,绑定es的数据目录

  • -v es-logs:/usr/share/elasticsearch/logs:挂载逻辑卷,绑定es的日志目录

  • -v es-plugins:/usr/share/elasticsearch/plugins:挂载逻辑卷,绑定es的插件目录

  • --privileged:授予逻辑卷访问权

  • --network es-net :加入一个名为es-net的网络中

  • -p 9200:9200:端口映射配置

在浏览器中输入:http://192.168.71.132:9200 即可看到elasticsearch的响应结果:

1.4.1.2. 部署kibana

kibana可以给我们提供一个elasticsearch的可视化界面,便于我们学习。

运行docker命令,部署kibana

docker run -d \
--name kibana \
-e ELASTICSEARCH_HOSTS=http://es:9200 \
--network=es-net \
-p 5601:5601  \
kibana:7.12.1
  • --network es-net :加入一个名为es-net的网络中,与elasticsearch在同一个网络中

  • -e ELASTICSEARCH_HOSTS=http://es:9200":设置elasticsearch的地址,因为kibana已经与elasticsearch在一个网络,因此可以用容器名直接访问elasticsearch

  • -p 5601:5601:端口映射配置

kibana启动一般比较慢,需要多等待一会,可以通过命令:

docker logs -f kibana

查看运行日志,当查看到下面的日志,说明成功:

此时,在浏览器输入地址访问:http://192.168.71.132:5601 即可看到结果:

kibana中提供了一个DevTools界面:

这个界面中可以编写DSL来操作elasticsearch。并且对DSL语句有自动补全功能。

1.4.2. 分词器

参考如下方式安装分词器:

离线安装ik插件(较快)

1)查看数据卷目录

安装插件需要知道elasticsearch的plugins目录位置,而我们用了数据卷挂载,因此需要查看elasticsearch的数据卷目录,通过下面命令查看:

x docker volume inspect es-plugins

显示结果:

[{"CreatedAt": "2024-03-09T15:06:34+08:00","Driver": "local","Labels": null,"Mountpoint": "/var/lib/docker/volumes/es-plugins/_data","Name": "es-plugins","Options": null,"Scope": "local"}
]

说明plugins目录被挂载到了:/var/lib/docker/volumes/es-plugins/_data这个目录中。

2)解压缩分词器安装包

下面我们需要把资料中的ik分词器解压缩,重命名为ik

3)上传到es容器的插件数据卷中

也就是/var/lib/docker/volumes/es-plugins/_data

4)重启容器

# 4、重启容器
docker restart es

5)测试:

IK分词器包含两种模式:

  • ik_smart:最少切分

  • ik_max_word:最细切分

GET /_analyze
{"text": "王虎说学习java实在是太有趣了","analyzer": "ik_smart"
}

结果:

{"tokens" : [{"token" : "王","start_offset" : 0,"end_offset" : 1,"type" : "CN_CHAR","position" : 0},{"token" : "虎","start_offset" : 1,"end_offset" : 2,"type" : "CN_CHAR","position" : 1},{"token" : "说","start_offset" : 2,"end_offset" : 3,"type" : "CN_CHAR","position" : 2},{"token" : "学习","start_offset" : 3,"end_offset" : 5,"type" : "CN_WORD","position" : 3},{"token" : "java","start_offset" : 5,"end_offset" : 9,"type" : "ENGLISH","position" : 4},{"token" : "实在是","start_offset" : 9,"end_offset" : 12,"type" : "CN_WORD","position" : 5},{"token" : "太","start_offset" : 12,"end_offset" : 13,"type" : "CN_CHAR","position" : 6},{"token" : "有趣","start_offset" : 13,"end_offset" : 15,"type" : "CN_WORD","position" : 7}]
}

3.3 扩展词词典,停用词词典

随着互联网的发展,“造词运动”也越发的频繁。出现了很多新的词语,在原有的词汇列表中并不存在。比如:“奥力给”,“姬霓太美” 等。

所以我们的词汇也需要不断的更新,IK分词器提供了扩展和停用词汇的功能。

1)打开IK分词器config目录:

2)在IKAnalyzer.cfg.xml配置文件内容添加:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties><comment>IK Analyzer 扩展配置</comment><!--用户可以在这里配置自己的扩展字典 *** 添加扩展词典--><entry key="ext_dict">ext.dic</entry><!--用户可以在这里配置自己的扩展停止词字典  *** 添加停用词词典--><entry key="ext_stopwords">stopword.dic</entry>
</properties>

3.1)新建一个 ext.dic,可以参考config目录下复制一个配置文件进行修改

黑虎阿福
奥利给
姬霓太美

3.2)打开stopword.dic,可以看到它里面已经有一些禁用词了,我们再加几个:

 4)重启elasticsearch

docker restart es# 查看 日志
docker logs -f elasticsearch

5)测试效果:

GET /_analyze
{"text": "奥利给,黑虎阿福说姬霓太美学习java实在是太有趣了jzm","analyzer": "ik_smart"
}
{"tokens" : [{"token" : "奥利给","start_offset" : 0,"end_offset" : 3,"type" : "CN_WORD","position" : 0},{"token" : "黑虎阿福","start_offset" : 4,"end_offset" : 8,"type" : "CN_WORD","position" : 1},{"token" : "说","start_offset" : 8,"end_offset" : 9,"type" : "CN_CHAR","position" : 2},{"token" : "姬霓太美","start_offset" : 9,"end_offset" : 13,"type" : "CN_WORD","position" : 3},{"token" : "学习","start_offset" : 13,"end_offset" : 15,"type" : "CN_WORD","position" : 4},{"token" : "java","start_offset" : 15,"end_offset" : 19,"type" : "ENGLISH","position" : 5},{"token" : "实在是","start_offset" : 19,"end_offset" : 22,"type" : "CN_WORD","position" : 6},{"token" : "太","start_offset" : 22,"end_offset" : 23,"type" : "CN_CHAR","position" : 7},{"token" : "有趣","start_offset" : 23,"end_offset" : 25,"type" : "CN_WORD","position" : 8}]
}

注意当前文件的编码必须是 UTF-8 格式,严禁使用Windows记事本编辑

2.索引库操作

索引库就类似数据库表,mapping映射就类似表的结构。

我们要向es中存储数据,必须先创建“库”和“表”。

2.1.mapping映射属性

mapping是对索引库中文档的约束,常见的mapping属性包括:

  • type:字段数据类型,常见的简单类型有:

    • 字符串:text(可分词的文本)、keyword(精确值,例如:品牌、国家、ip地址)

    • 数值:long、integer、short、byte、double、float、

    • 布尔:boolean

    • 日期:date

    • 对象:object

  • index:是否创建索引,默认为true

  • analyzer:使用哪种分词器

  • properties:该字段的子字段

例如下面的json文档:

{"age": 21,"weight": 52.1,"isMarried": false,"info": "黑马程序员Java讲师","email": "zy@itcast.cn","score": [99.1, 99.5, 98.9],"name": {"firstName": "云","lastName": "赵"}
}

对应的每个字段映射(mapping):

  • age:类型为 integer;参与搜索,因此需要index为true;无需分词器

  • weight:类型为float;参与搜索,因此需要index为true;无需分词器

  • isMarried:类型为boolean;参与搜索,因此需要index为true;无需分词器

  • info:类型为字符串,需要分词,因此是text;参与搜索,因此需要index为true;分词器可以用ik_smart

  • email:类型为字符串,但是不需要分词,因此是keyword;不参与搜索,因此需要index为false;无需分词器

  • score:虽然是数组,但是我们只看元素的类型,类型为float;参与搜索,因此需要index为true;无需分词器

  • name:类型为object,需要定义多个子属性

    • name.firstName;类型为字符串,但是不需要分词,因此是keyword;参与搜索,因此需要index为true;无需分词器

    • name.lastName;类型为字符串,但是不需要分词,因此是keyword;参与搜索,因此需要index为true;无需分词器

2.2.索引库的CRUD

这里我们统一使用Kibana编写DSL的方式来演示。

# 创建索引库
PUT /heima
{"mappings": {"properties": {"info": {"type": "text","analyzer": "ik_smart"},"email": {"type": "keyword","index": false},"name": {"type": "object","properties": {"firstName": {"type": "keyword"},"lastName": {"type": "keyword"}}}}}
}# 查询
GET /heima#修改索引库,添加新字段
PUT /heima/_mapping
{"properties": {"age": {"type": "integer"}}
}#删除
DELETE /heima

3.文档操作

# 插入一个文档
POST /heima/_doc/1
{"info": "黑马程序员Java讲师","email": "zy@itcast.cn","name": {"firstName" : "云","lastName" : "赵"}
}# 查询文档
GET /heima/_doc/1# 删除文档
DELETE /heima/_doc/1#全量修改文档
PUT /heima/_doc/1
{"info": "黑马程序员Java讲师","email": "ZhaoYun@itcast.cn","name": {"firstName" : "云","lastName" : "赵"}
}# 局部修改文档字段
POST /heima/_update/1
{"doc": {"email": "ZYun@itcast.cn"}
}

修改有两种方式:

  • 全量修改:直接覆盖原来的文档

  • 增量修改:修改文档中的部分字段

全量修改是覆盖原来的文档,其本质是:

  • 根据指定的id删除文档

  • 新增一个相同id的文档

注意:如果根据id删除时,id不存在,第二步的新增也会执行,也就从修改变成了新增操作了。

PUT /{索引库名}/_doc/文档id
{"字段1": "值1","字段2": "值2",// ... 略
}

增量修改是只修改指定id匹配的文档中的部分字段。

语法:

POST /{索引库名}/_update/文档id
{"doc": {"字段名": "新的值",}
}

    总结:

        文档操作有哪些?

  • 创建文档:POST /{索引库名}/_doc/文档id { json文档 }

  • 查询文档:GET /{索引库名}/_doc/文档id

  • 删除文档:DELETE /{索引库名}/_doc/文档id

  • 修改文档:

    • 全量修改:PUT /{索引库名}/_doc/文档id { json文档 }

    • 增量修改:POST /{索引库名}/_update/文档id { "doc": {字段}}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/273247.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

登录凭证------

为什么需要登录凭证&#xff1f; web开发中&#xff0c;我们使用的协议http是无状态协议&#xff0c;http每次请求都是一个单独的请求&#xff0c;和之前的请求没有关系&#xff0c;服务器就不知道上一步你做了什么操作&#xff0c;我们需要一个办法证明我没登录过 制作登录凭…

LVS (Linux Virtual server)集群介绍

一 集群和分布式 &#xff08;一&#xff09;系统性能扩展方式&#xff1a; Scale UP&#xff1a;垂直扩展&#xff0c;向上扩展,增强&#xff0c;性能更强的计算机运行同样的服务 &#xff08;即升级单机的硬件设备&#xff09; Scale Out&#xff1a;水平扩展&#xff0…

《Vite 报错》ReferenceError: module is not defined in ES module scope

ReferenceError: module is not defined in ES module scope 解决方案 postcss.config.js 要改为 postcss.config.cjs&#xff0c;也就是 .cjs 后缀。 原因解析 下图提示&#xff0c;packages.json 中的属性 type 设置为 module。所有 *.js 文件现在都被解释为 ESM&#xff…

vscode插件-TONGYILingma

通义灵码&#xff0c;是一款基于通义大模型的智能编码辅助工具&#xff0c;提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力&#xff0c;并针对阿里云 SDK/API 的使用场景调优&#xff0c;为开发者带来高…

HTML5 Web Worker之性能优化

描述 由于 JavaScript 是单线程的&#xff0c;当执行比较耗时的任务时&#xff0c;就会阻塞主线程并导致页面无法响应&#xff0c;这就是 Web Workers 发挥作用的地方。它允许在一个单独的线程&#xff08;称为工作线程&#xff09;中执行耗时的任务。这使得 JavaScript 代码可…

vue iis 配置

下载安装两个IIS模块 1). 传送门&#xff1a;URL Rewrite 2). 传送门&#xff1a;Application Request Routing 注 : 只有在 服务器的主页 有Application Request Routing 部署VUE网站 生成网站 在VUE项目打包生成出发布文件,即文件夹 dist,此处忽略 复制到你需要存放网站的…

Vue 监听器:让你的应用实时响应变化

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

加快代码审查的 7 个最佳实践

目录 前言 1-保持小的拉取请求 2-使用拉取请求模板 3-实施响应时间 SLA 4-培训初级和中级工程师 5-设置持续集成管道 6-使用拉取请求审查应用程序 7-生成图表以可视化您的代码更改 前言 代码审查可能会很痛苦软件工程师经常抱怨审查过程缓慢&#xff0c;延迟下游任务&…

Linux练习题

1、查看后台进程作业ID的指令是(A) A. jobs B. ps C. ls D. pg 2、在Linux系统的vi编辑器中&#xff0c;如果不保存对文件进行的修改&#xff0c;应使用(D )命令强制退出vi编辑器 A. :q B. :wq C. :q! D: :!q 3、列出当前目录下以…

Python实现ETS指标平滑模型(ETSModel算法)项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档视频讲解&#xff09;&#xff0c;如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 ETS模型&#xff08;Error-Trend-Seasonality Model&#xff09;&#xff0c;是一种广泛应用于时间序列…

QT----云服务器部署Mysql,Navicat连接1698 -Access denied for user ‘root‘@‘‘

阿里云有活动&#xff0c;白嫖了一年的新加坡轻量级服务器&#xff0c;有点卡&#xff0c;有时候要开梯子 白嫖300元优惠券 目录 1 安装启动Mysql服务2 更改连接权限2.1 Navicat连接报错1698 -Access denied for user root 3 qt连接云服务器数据库 1 安装启动Mysql服务 我使用…

算法第二十六天-删除有序数组中的重复项Ⅱ

删除有序数组中的重复项 题目要求 解题思路 题目要求中提到原地修改&#xff0c;那么肯定需要一个指针指向当前即将放置元素的位置&#xff0c;需要另外一个指针向后遍历所有元素&#xff0c;所以[双指针]解法呼之欲出。 慢指针slow&#xff1a;指向当前元素放置的位置&…

深入了解二叉搜索树:原理、实现与应用

目录 一、介绍二叉搜索树 二、二叉搜索树的基本性质 三、二叉搜索树的实现 四、总结 在计算机科学中&#xff0c;数据结构是构建算法和程序的基础。其中&#xff0c;二叉搜索树&#xff08;Binary Search Tree&#xff0c;简称 BST&#xff09;作为一种常见的数据结构&#…

JavaEE+springboot教学仪器设备管理系统o9b00-springmvc

本文旨在设计一款基于Java技术的教学仪器设备销售网站&#xff0c;以提高网站性能、功能完善、用户体验等方面的优势&#xff0c;解决现有教学仪器设备销售网站的问题&#xff0c;并为广大教育工作者和学生提供便捷的教学仪器设备销售渠道。本文首先介绍了Java技术的相关基础知…

CSS拖曳盒子案例

让我为大家带来一个小案例吧&#xff01; <!DOCTYPE html> <html><head><meta charset"utf-8"><title></title><style>* {margin: 0;padding: 0;}.box1 {width: 100px;height: 100px;background-color: black;margin-bot…

大载重无人机基础技术,研发一款50KG负重六旋翼无人机技术及成本分析

六旋翼无人机是一种多旋翼无人机&#xff0c;具有六个旋翼&#xff0c;通常呈“X”形布局。它采用电动串列式结构&#xff0c;具有垂直起降、悬停、前飞、后飞、侧飞、俯仰、翻滚等多种飞行动作的能力。六旋翼无人机通常被用于航拍、农业植保、环境监测、地形测绘等领域。 六旋…

Django工具

一、分页器介绍 1.1、介绍 分页,就是当我们在页面中显示一些信息列表,内容过多,一个页面显示不完,需要分成多个页面进行显示时,使用的技术就是分页技术 在django项目中,一般是使用3种分页的技术: 自定义分页功能,所有的分页功能都是自己实现django的插件 django-pagin…

数据库(mysql)-新手笔记(主外键,视图)

数据库基本知识点- http://t.csdnimg.cn/CVa9e 主外键 主键(唯一性,非空性) 主键是数据库表中的一个或多个字段&#xff0c;其值唯一标识表中的每一行/记录。 唯一性: 主键字段中的每个值都必须是唯一的&#xff0c;不能有两个或更多的记录具有相同的主键值 非空性&#x…

稀碎从零算法笔记Day14-LeetCode:同构字符串

题型&#xff1a;字符串、哈希表 链接&#xff1a;205. 同构字符串 - 力扣&#xff08;LeetCode&#xff09; 来源&#xff1a;LeetCode 题目描述 给定两个字符串 s 和 t &#xff0c;判断它们是否是同构的。 如果 s 中的字符可以按某种映射关系替换得到 t &#xff0c;那…

红队攻防之Go上线基础免杀(一)

不堪风雨乱红尘&#xff0c;情到真时恰是空 加载bypass插件 使用插件生成shellcode.txt文件 选择监听器和配置 使用插件生成的shellcode文件如下&#xff1a; process_xxx xxx,...... > code.txtprocess_xxx xxx > code1.txtprocess_xxx xxx > code2.txt将生成的三个…