PromptBreeder---针对特定领域演化和发展提示词的方法

原文地址:promptbreeder-evolves-adapts-prompts-for-a-given-domain

论文地址:https://arxiv.org/pdf/2309.16797.pdf

2023 年 10 月 6 日 

提示方法分为两大类

  • 硬提示是由人工精心设计的文本提示,包含离散的输入令牌;其缺点是创建一个有效的提示需要大量的努力。
  • 软提示是可学习的张量,与输入嵌入连接起来,可以针对数据集进行优化;其缺点是它们不便于人类阅读,因为你没有将这些“虚拟令牌”与实际单词的嵌入相匹配。

退一步来看,大型语言模型(LLMs)需要被编程,而现在我们有一种编程方式,即提示工程(Prompt Engineering)。提示工程可以在三个阶段进行:训练时、生成时或使用增强工具时。

无梯度(Gradient-Free)实现是指使用不同的措辞技术和操作方法来构成和提供提示的实例。这些方法被称为无梯度,因为它们以任何方式都不改变或微调基础的大型语言模型。所有列在无梯度下的提示工程方法通常都是非常通用的,并且是手工设计的。

梯度(Gradient)方法更像是机器学习方法,可以看作是更自动化的;但与此同时,它也是一种不透明的方法,没有纯提示工程方法那样的透明度。

像PromptBreeder这样的梯度方法是一个自动的自我改进过程,并且可以适应手头的特定领域。

PromptBreeder这样的方法直接对连续提示表示进行微调。

需要注意的是,任何更新大型语言模型的所有或部分参数的方法,随着模型变得越来越大,将无法扩展,而且对于越来越多的隐藏在API后面的大型语言模型来说,这种方法也将无法工作。

回到PromptBreeder

PromptBreeder基于软提示的概念,这些软提示是在提示调整过程中创建的。

对于某些实现,与硬提示不同,软提示不能以文本形式查看和编辑。提示通常由一个嵌入组成,这是一串数字,从更大的模型中获取知识。

对于某些实现,软提示的一个缺点是缺乏可解释性。AI发现了对特定任务有意义的提示,但不能解释为什么选择了这些嵌入。与深度学习模型本身一样,软提示是不透明的。

软提示充当了额外训练数据的替代品。研究人员最近估计,一个好的语言分类器提示相当于数百到数千个额外的数据点。

PromptBreeder由一个大型语言模型支持,并在评估基于训练集的提示的同时,演化出面向任务的提示集合。

这个过程经过多代迭代来演化任务提示。

关键的是,这些任务提示的变异是由大型语言模型生成的变异提示所控制的,这些变异提示在整个演化过程中以自我参照的方式得到生成和改进。

根据DeepMind的说法,PromptBreeder在常用的算术和常识推理基准上,表现优于最先进的提示策略,如Chain-of-Thought和Plan-and-Solve提示。

以上是PromptBreeder的概述。给定一个问题描述和一组初始的通用思考风格和变异提示,PromptBreeder生成了一组进化的单元,每个单元通常由两个任务提示和一个变异提示组成。

任务提示的适应性是通过评估它在随机批次训练数据上的表现来确定的。在多代过程中,PromptBreeder使用五种不同的变异算子来变异任务提示和变异提示。

重点是自我参照地演化出适应特定领域的任务提示,以及越来越有用的变异提示。

PromptBreeder是一个通用目的的、自我参照的、自我改进机制,它演化并适应特定领域的提示。

考虑到上述图像,存在多种自我参照提示演化的版本。
(a) 直接:直接使用LLM生成提示策略P的变体P'。
(b) 变异提示引导:使用变异提示M,可以明确提示LLM产生变体。
(c) 超变异:通过使用超变异提示H,我们还可以演化变异提示本身,使系统成为自我参照的。
(d) PromptBreeder:通过从一组种子思考风格T、变异提示M以及问题领域D的高层次描述生成初始的提示策略种群,来改善演化的提示和变异提示的多样性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/273571.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何保证 redis 的高并发和高可用?redis 的主从复制原理能介绍一下么?redis 的哨兵原理能介绍一下么?

目录 一、面试官心理分析 二、面试题剖析 1.Redis 主从架构 2.Redis replication 的核心机制 3.Redis 主从复制的核心原理 4.主从复制的断点续传 5.无磁盘化复制 6.过期 key 处理 7.复制的完整流程 8.全量复制 9.增量复制 10.heartbeat 11.异步复制 12.Redis 如何…

鸿蒙OS应用开发之显示图片组件11

前面学习了像素降级处理的方法,这样方便一个图片可以显示在不同大小屏幕的技术,同样不会失真。现在来学习另外一个重要的技术,就是图片处理。图片处理是一个很范的名词,一般来说图片处理都会采用预处理的方法,比如在电脑上采用图形处理软件进行处理,然后再使用到手机的软…

校园小情书微信小程序,社区小程序前后端开源,校园表白墙交友小程序

功能 表白墙卖舍友步数旅行步数排行榜情侣脸漫画脸个人主页私信站内消息今日话题评论点赞收藏 效果图

JS实现chatgpt数据流式回复效果

最近高了一个简单chatgpt对话功功能,回复时希望流式回复,而不是直接显示结果,其实很简单,前端流式读取即可,后端SSE实现流式传输 前端用到fetch获取数据,然后利用reader读取 let requestId parseInt(Ma…

章六、集合(1)—— 概念、API、List 接口及实现类、集合迭代

零、 关闭IDEA调试时自动隐藏空元素 一、 集合的概念 存储一个班学员信息,假定一个班容纳20名学员 当我们需要保存一组一样(类型相同)的元素的时候,我们应该使用一个容器来存储,数组就是这样一个容器。 数组有什么缺…

CentOS7 利用remi yum源安装php8.1

目录 前言remi yum源remi yum源 支持的操作系统remi yum源 支持的php版本 安装epel源安装remi源安装 php8.1查看php版本查看php-fpm服务启动php-fpm服务查看php-fpm服务运行状态查看php-fpm服务占用的端口查看 php8.1 相关的应用 前言 CentOS Linux release 7.9.2009 (Core) …

GO语言接入支付宝

GO语言接入支付宝 今天就go语言接入支付宝写一个教程 使用如下库,各种接口较为齐全 "github.com/smartwalle/alipay/v3"先简单介绍下加密: 试想,当用户向支付宝付款时,若不进行任何加密,那么黑客就可以任…

机器学习——感知机模型

机器学习系列文章 入门必读:机器学习介绍 文章目录 机器学习系列文章前言1. 感知机1.1 感知机定义1.2 感知机学习策略2. 代码实现2.1 构建数据2.2 编写函数2.3 迭代3. 总结前言 大家好,大家好✨,这里是bio🦖。这次为大家带来的是感知机模型。下面跟我一起来了解感知机模…

uniapp:小程序数字键盘功能样式实现

代码如下&#xff1a; <template><view><view><view class"money-input"><view class"input-container" click"toggleBox"><view class"input-wrapper"><view class"input-iconone"…

交流负载箱的特点和优势有哪些?

交流负载箱广泛应用于电力系统、新能源、轨道交通、航空航天等领域。它具有以下特点和优势&#xff1a; 1. 灵活性高&#xff1a;交流负载箱可以根据实际需求&#xff0c;调整输出电流、电压、功率等参数&#xff0c;以满足不同场景下的测试需求。同时&#xff0c;它还可以实现…

文章解读与仿真程序复现思路——电网技术EI\CSCD\北大核心《含海上风电制氢的综合能源系统分布鲁棒低碳优化运行》

本专栏栏目提供文章与程序复现思路&#xff0c;具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》 论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html 电网论文源程序-CSDN博客电网论文源…

一文读懂私网解析 PrivateZone

越来越多的企业认同&#xff0c;多云和混合云是实现数字化变革的必由之路。Cisco 发布的《2022 Global Hybrid Cloud Trends Report》显示&#xff0c; 82% 的受访者使用混合多云架构来支撑其应用程序。混合云架构下&#xff0c;如何灵活、可靠且低成本地满足各种场景 DNS 的解…

CVE-2024-25600 WordPress Bricks Builder RCE-漏洞分析研究

本次代码审计项目为PHP语言&#xff0c;我将继续以漏洞挖掘者的视角来分析漏洞的产生&#xff0c;调用与利用..... 前方高能&#xff0c;小伙伴们要真正仔细看咯..... 漏洞简介 CVE-2024-25600 是一个严重的&#xff08;CVSS 评分 9.8&#xff09;远程代码执行 (RCE) 漏洞&am…

linux网络通信(TCP)

TCP通信 1.socket----->第一个socket 失败-1&#xff0c;错误码 参数类型很多&#xff0c;man查看 2.connect 由于s_addr需要一个32位的数&#xff0c;使用下面函数将点分十进制字符串ip地址以网络字节序转换成32字节数值 同理端口号也有一个转换函数 我们的端口号位两个字…

大屏适配pad包括大屏上的弹框

1.效果 横屏 2.竖屏效果 代码部分 <template><div class"tz_drive_wrapper" id"contain"><div class"tz_drive_header"><page-header></page-header><div class"tz_drive-time">通州区住房…

Android Studio Iguana | 2023.2.1版本

Android Gradle 插件和 Android Studio 兼容性 Android Studio 构建系统基于 Gradle&#xff0c;并且 Android Gradle 插件 (AGP) 添加了一些特定于构建 Android 应用程序的功能。下表列出了每个版本的 Android Studio 所需的 AGP 版本。 如果特定版本的 Android Studio 不支持…

校园小情书微信小程序源码 | 社区小程序前后端开源 | 校园表白墙交友小程序

项目描述&#xff1a; 校园小情书微信小程序源码 | 社区小程序前后端开源 | 校园表白墙交友小程序 功能介绍&#xff1a; 表白墙 卖舍友 步数旅行 步数排行榜 情侣脸 漫画脸 个人主页 私信 站内消息 今日话题 评论点赞收藏 服务器环境要求&#xff1a;PHP7.0 MySQL5.7 效果…

c++ primer plus 笔记 第十六章 string类和标准模板库

string类 string自动调整大小的功能&#xff1a; string字符串是怎么占用内存空间的&#xff1f; 前景&#xff1a; 如果只给string字符串分配string字符串大小的空间&#xff0c;当一个string字符串附加到另一个string字符串上&#xff0c;这个string字符串是以占用…

javascript 版 WinMerge

WinMerge.html&#xff1a; <!DOCTYPE html> <html> <head><title>WinMerge</title><meta charset"UTF-8"> </head> <body> <h1>文件比较</h1> <form><label for"file1">旧版本…

【Idea】八种Debug模式介绍

1.行断点 在对应的代码行左侧边栏点击鼠标左键&#xff0c;会出现一个红色圆圈&#xff0c;以debug模式执行时当代码运行到此处则会停止&#xff0c;并可以查询相关上下文参数 2.方法断点 在方法左侧点击创建断点,在方法进入时会停止&#xff0c;同时可以右键断点&#xff0c;…