强化学习工具箱(Matlab)

1、Get Started

1.1、MDP环境下训练强化学习智能体

MDP环境如下图在这里插入图片描述

  1. 每个圆圈代表一个状态
  2. 每个状态都有上或下的选择
  3. 智能体从状态 1 开始
  4. 智能体接收的奖励值为图中状态转移的值
  5. 训练目标是最大化累计奖励

(1)创建 MDP 环境

创建一个具有 8 个状态和 2 个动作( " up " 和 " down " )的MDP模型。

MDP = createMDP(8,["up";"down"]);

要对上图中状态转换进行建模,需修改 MDP 的状态转换矩阵和奖励矩阵。默认情况下,这些矩阵均为零。有关创建 MDP 模型和 MDP 对象属性的更多信息,请参见 createMDP 。

修改 MDP 的状态转换和奖励矩阵,例如,在以下命令中:

  1. 前两行指定了通过执行动作 1( " up " )从状态 1 到状态 2 的转移,以及此转移对应的奖励 +3
  2. 接下来的两行指定了通过执行操作2( " down " )从状态 1 到状态 3 的转移,以及此转移对应的奖励 +1
MDP.T(1,2,1) = 1;
MDP.R(1,2,1) = 3;
MDP.T(1,3,2) = 1;
MDP.R(1,3,2) = 1;

同理,指定图中其余的状态转移和对应奖励。

% State 2 transition and reward
MDP.T(2,4,1) = 1;
MDP.R(2,4,1) = 2;
MDP.T(2,5,2) = 1;
MDP.R(2,5,2) = 1;
% State 3 transition and reward
MDP.T(3,5,1) = 1;
MDP.R(3,5,1) = 2;
MDP.T(3,6,2) = 1;
MDP.R(3,6,2) = 4;
% State 4 transition and reward
MDP.T(4,7,1) = 1;
MDP.R(4,7,1) = 3;
MDP.T(4,8,2) = 1;
MDP.R(4,8,2) = 2;
% State 5 transition and reward
MDP.T(5,7,1) = 1;
MDP.R(5,7,1) = 1;
MDP.T(5,8,2) = 1;
MDP.R(5,8,2) = 9;
% State 6 transition and reward
MDP.T(6,7,1) = 1;
MDP.R(6,7,1) = 5;
MDP.T(6,8,2) = 1;
MDP.R(6,8,2) = 1;
% State 7 transition and reward
MDP.T(7,7,1) = 1;
MDP.R(7,7,1) = 0;
MDP.T(7,7,2) = 1;
MDP.R(7,7,2) = 0;
% State 8 transition and reward
MDP.T(8,8,1) = 1;
MDP.R(8,8,1) = 0;
MDP.T(8,8,2) = 1;
MDP.R(8,8,2) = 0;

指定状态 7 和状态 8 为 MDP 的终端状态。

MDP.TerminalStates = ["s7";"s8"];

创建强化学习 MDP 环境。

env = rlMDPEnv(MDP);

通过重置函数指定环境的初始状态始终为状态 1,该函数在每次训练或模拟开始时调用。创建一个匿名函数句柄,将初始状态设置为 1。

env.ResetFcn = @() 1;

设置随机数种子。

rng(0)

(2) 创建 Q-Learning 智能体

首先使用 MDP 环境中的观察和动作创建 Q table,将学习率设置为1。

obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);
qTable = rlTable(obsInfo, actInfo);
qFunction = rlQValueFunction(qTable, obsInfo, actInfo);
qOptions = rlOptimizerOptions(LearnRate=1);

然后使用 Q table 创建一个 Q-learning 智能体,遵循 ϵ \epsilon ϵ-贪婪策略。有关创建 Q-learning 智能体的更多信息,请参阅 rlQAgent 和 rlQAgentOptions 。

agentOpts = rlQAgentOptions;
agentOpts.DiscountFactor = 1;
agentOpts.EpsilonGreedyExploration.Epsilon = 0.9;
agentOpts.EpsilonGreedyExploration.EpsilonDecay = 0.01;
agentOpts.CriticOptimizerOptions = qOptions;
qAgent = rlQAgent(qFunction,agentOpts); %#ok<NASGU> 

(3)训练 Q-Learning 智能体

训练智能体首先需要指定训练选项。对于此示例,使用以下选项:

  1. 最多训练 500 回合,每回合最多持续 50 个时间步长
  2. 当智能体在连续 30 回合内的平均累积奖励 >10,停止训练

更多信息请参见 rlTrainingOptions 。

trainOpts = rlTrainingOptions;
trainOpts.MaxStepsPerEpisode = 50;
trainOpts.MaxEpisodes = 500;
trainOpts.StopTrainingCriteria = "AverageReward";
trainOpts.StopTrainingValue = 13;
trainOpts.ScoreAveragingWindowLength = 30;

使用函数 Train 训练智能体,大该需要几分钟完成。为了节省时间,可以通过将 doTraining 设置为 false 来加载预训练的智能体。若要自己训练智能体,将 doTraining 设置为 true 。

doTraining = false;if doTraining% Train the agent.trainingStats = train(qAgent,env,trainOpts); %#ok<UNRCH> 
else% Load pretrained agent for the example.load("genericMDPQAgent.mat","qAgent"); 
end

在这里插入图片描述

(4)验证 Q-Learning 结果

为了验证训练结果,使用函数 sim 在 MDP 环境中模拟智能体。智能体成功地找到了最佳路径,并获得了 13 的累积奖励。

Data = sim(qAgent,env);
cumulativeReward = sum(Data.Reward)==> cumulativeReward = 13

由于折扣系数设置为 1,因此经过训练的智能体的 Q table 中的值即真实的回报。

QTable = getLearnableParameters(getCritic(qAgent));
QTable{1}==> ans = 8x2 single matrix12.9912   11.66218.2141    9.995010.8645    4.04144.8017   -1.61505.1975    8.99755.8058   -0.23530         00         0
TrueTableValues = [13,12;5,10;11,9;3,2;1,9;5,1;0,0;0,0]
==> TrueTableValues = 8×213    125    1011     93     21     95     10     00     0

1.2、在网格世界中训练智能体(Q-learning 和 SARSA)

网格世界描述如下:

  1. 网格世界大小为 5 × 5 5\times5 5×5,有四个可能的动作(North=1,South=2,East=3,West=4)
  2. 智能体从网格(2,1)出发
  3. 如果智能体到达网格(5,5),则它将获得奖励 10
  4. 网格世界中包含从网格(2,4)到网格(4,4)的跳跃,奖励为 5
  5. 智能体会被障碍物(黑色网格区域)阻挡
  6. 所有其他动作将获得奖励 -1
    在这里插入图片描述

(1)创建网格世界环境

env = rlPredefinedEnv("BasicGridWorld");

通过创建一个充值函数来指定智能体的初始状态始终为 [ 2 , 1 ] [2,1] [2,1],该函数在每次训练和模拟开始调用。

从位置[1,1]开始对状态进行编号。状态编号随着您向下移动第一列,然后向下移动后续每一列而增加。因此,创建一个匿名函数句柄,将初始状态设置为2。

固定随机数种子

rng(0)

(2)创建 Q-Learning 智能体

首先创建 Q table,然后将学习率设置为1。

qTable = rlTable(getObservationInfo(env),getActionInfo(env));
qRepresentation = rlQValueRepresentation(qTable,getObservationInfo(env),getActionInfo(env));
qRepresentation.Options.LearnRate = 1;

接下来,使用 Q-table 创建 Q-learning 智能体,并设定 ϵ \epsilon ϵ-贪婪策略。更多信息请参见 rlQAgent 和 rlQAgentOptions。

agentOpts = rlQAgentOptions;
agentOpts.EpsilonGreedyExploration.Epsilon = .04;
qAgent = rlQAgent(qRepresentation,agentOpts);

(3)训练 Q-Learning 智能体

指定以下训练选项:

  • 最多训练 200 回合,每个回合最多持续 50 个时间步长
  • 当智能体连续 20 回合平均累计奖励 >10 时,停止训练

更多的信息请参见 rlTrainingOptions

trainOpts = rlTrainingOptions;
trainOpts.MaxStepsPerEpisode = 50;
trainOpts.MaxEpisodes= 200;
trainOpts.StopTrainingCriteria = "AverageReward";
trainOpts.StopTrainingValue = 11;
trainOpts.ScoreAveragingWindowLength = 30;

使用函数 Train 来训练 Q-learning 智能体,训练可能需要几分钟才能完成。

为了在运行此示例时节省时间,可以将 doTraining 设置为 false 来加载预训练的智能体。若要自己训练智能体,可以将 doTraining 设置为 true 。

doTraining = false;if doTraining% Train the agent.trainingStats = train(qAgent,env,trainOpts);
else% Load the pretrained agent for the example.load('basicGWQAgent.mat','qAgent')
end

回合管理器窗口打开并显示训练进度。
在这里插入图片描述

(4)验证 Q-Learning 结果

plot(env)
env.Model.Viewer.ShowTrace = true;
env.Model.Viewer.clearTrace;

使用函数 sim 模拟环境中的智能体。

sim(qAgent,env)

在这里插入图片描述

(5)创建和训练 SARSA 智能体

使用与 Q-learning 智能体相同的 Q table 和 ϵ \epsilon ϵ-贪婪策略。更多信息请参见 rlSARSAAgent 和 rlSARSAAgentOptions

agentOpts = rlSARSAAgentOptions;
agentOpts.EpsilonGreedyExploration.Epsilon = 0.04;
sarsaAgent = rlSARSAAgent(qRepresentation,agentOpts);

使用函数 Train 训练 SARSA 智能体,训练可能需要几分钟才能完成。

为了在运行此示例时节省时间,可以将 doTraining 设置为 false 来加载预训练的智能体。若要自己训练智能体,可以将 doTraining 设置为 true 。

doTraining = false;if doTraining% Train the agent.trainingStats = train(sarsaAgent,env,trainOpts);
else% Load the pretrained agent for the example.load('basicGWSarsaAgent.mat','sarsaAgent')
end

在这里插入图片描述

(6)验证 SARSA 结果

plot(env)
env.Model.Viewer.ShowTrace = true;
env.Model.Viewer.clearTrace;

在环境中对智能体进行仿真。

sim(sarsaAgent,env)

在这里插入图片描述

SARSA 智能体找到与 Q-learning 智能体相同的解决方案。

1.3、创建 Simulink 环境并训练智能体

这个例子展示了如何将水箱 Simulink 模型中的 PI 控制器转换为强化学习深度确定性策略梯度(DDPG)智能体。有关在 MATLAB 中训练 DDPG 智能体的示例,请参阅 Compare DDPG Agent to LQR Controller 。

(1)水箱模型

该模型的目标是控制水箱中的水位。有关水箱模型的更多信息,请参阅 watertank Simulink Model 。
在这里插入图片描述
修改原始模型:

  1. 删除PID控制器
  2. 插入强化学习智能体模块
  3. 计算状态观测矢量 [ ∫ e d t e h ] T \left[\int\ e\ \mathrm{dt}\quad e\quad h\right]^T [ e dteh]T,其中 h h h 是水箱中的水位, e = r − h e=r−h e=rh r r r 是参考水位
  4. 设置奖励: r e w a r d = 10 ( ∣ e ∣ < 0.1 ) − 1 ( ∣ e ∣ ≥ 0.1 ) − 100 ( h ≤ 0 ∣ ∣ h ≥ 20 ) \mathrm{reward}=10\ (\ \mid e \mid<\ 0.1)\ -1\ (\ \mid e \mid\ \geq\ 0.1\ )\ -100\ (\ h\leq0\ ||\ h\geq20) reward=10 ( e∣< 0.1) 1 ( e  0.1 ) 100 ( h0 ∣∣ h20)
  5. 设置终端信号,例如仿真在 h ≤ 0 h≤0 h0 h ≥ 20 h≥20 h20 时停止。

生成的模型是 r l w a t e r t a n k . s l x \mathrm{rlwatertank.slx} rlwatertank.slx。有关此模型和更改的详细信息,请参见创建自定义 Simulink 环境 。

open_system("rlwatertank")

在这里插入图片描述

(2)创建环境

环境模型的创建包括以下内容:

  • 智能体与环境交互的动作信号和状态观测信号。有关详细信息,请参见环境接口
  • 智能体用来衡量其结果好坏的奖励信号。有关详细信息,请参见 在自定义环境中定义奖励和状态观测信号

定义状态观测明细 o b s I n f o \mathrm{obsInfo} obsInfo 和动作明细 a c t I n f o \mathrm{actInfo} actInfo

% Observation info
obsInfo = rlNumericSpec([3 1],...LowerLimit=[-inf -inf 0  ]',...UpperLimit=[ inf  inf inf]');% Name and description are optional and not used by the software
obsInfo.Name = "observations";
obsInfo.Description = "integrated error, error, and measured height";% Action info
actInfo = rlNumericSpec([1 1]);
actInfo.Name = "flow";

创建环境对象。

env = rlSimulinkEnv("rlwatertank","rlwatertank/RL Agent",...obsInfo,actInfo);

设置一个自定义重置函数,使模型的参考值随机化。

env.ResetFcn = @(in)localResetFcn(in);

指定仿真时间 T f T_f Tf和智能体采样时间 T s T_s Ts(单位为秒)。

Ts = 1.0;
Tf = 200;

设置随机数种子。

rng(0)

(3)创建 Critic

DDPG 智能体使用参数化动作价值函数来评估策略,它以当前状态观测和动作作为输入,输出单个标量(估计的未来折扣累积奖励)。

要在 critic 中对参数化动作价值函数进行建模,使用具有两个输入层(一个用于 o b s I n f o \mathrm{obsInfo} obsInfo 指定的状态观测通道,另一个用于 a c t I n f o \mathrm{actInfo} actInfo 指定的动作通道)和一个输出层( 返回标量值 )的神经网络。

将每条网络路径定义为层对象数组。为每个路径的输入和输出层指定名称。通过这些名称,可以连接各路径,然后将网络输入层和输出层与相应的环境通道明确关联。从 o b s I n f o \mathrm{obsInfo} obsInfo a c t I n f o \mathrm{actInfo} actInfo 明细中获取状态观测空间和动作空间的维度。

% Observation path
obsPath = [featureInputLayer(obsInfo.Dimension(1),Name="obsInLyr")fullyConnectedLayer(50)reluLayerfullyConnectedLayer(25,Name="obsPathOutLyr")];% Action path
actPath = [featureInputLayer(actInfo.Dimension(1),Name="actInLyr")fullyConnectedLayer(25,Name="actPathOutLyr")];% Common path
commonPath = [additionLayer(2,Name="add")reluLayerfullyConnectedLayer(1,Name="QValue")];criticNetwork = layerGraph();
criticNetwork = addLayers(criticNetwork,obsPath);
criticNetwork = addLayers(criticNetwork,actPath);
criticNetwork = addLayers(criticNetwork,commonPath);criticNetwork = connectLayers(criticNetwork, ..."obsPathOutLyr","add/in1");
criticNetwork = connectLayers(criticNetwork, ..."actPathOutLyr","add/in2");

查看 Critic 网络配置。

figure
plot(criticNetwork)

在这里插入图片描述
将网络转换为 dlnetwork 对象并汇总其属性。

criticNetwork = dlnetwork(criticNetwork);
summary(criticNetwork)==>  Initialized: trueNumber of learnables: 1.5kInputs:1   'obsInLyr'   3 features2   'actInLyr'   1 features

指定的深度神经网络、环境明细对象、网络输入与状态观测和动作通道相关联的名称,创建 Critic 对象。

critic = rlQValueFunction(criticNetwork, ...obsInfo,actInfo, ...ObservationInputNames="obsInLyr", ...ActionInputNames="actInLyr");

有关 Q-value 函数的更多信息,请参阅 rlQValueFunction 。

用随机输入的状态观测和动作来检查 Critic。

getValue(critic, ...{rand(obsInfo.Dimension)}, ...{rand(actInfo.Dimension)})==> ans = single-0.1631

有关创建 Critics 的详细信息,请参见 Create Policies and Value Functions 。

(4)创建 Actor

DDPG 智能体在连续动作空间上使用参数化的确定性策略,该策略由连续的确定性 Actor 学习。

Actor 将当前状态观测作为输入,返回动作作为输出。

对 Actor 进行建模,需使用具有一个输入层(如 o b s I n f o \mathrm{obsInfo} obsInfo 所指定,接收环境状态观测通道的内容)和一个输出层(如 a c t I n f o \mathrm{actInfo} actInfo 所指定,将动作返回到环境动作通道)的神经网络。

将网络定义为层对象数组。

actorNetwork = [featureInputLayer(obsInfo.Dimension(1))fullyConnectedLayer(3)tanhLayerfullyConnectedLayer(actInfo.Dimension(1))];

将网络转换为 dlnetwork 对象并汇总其属性。

actorNetwork = dlnetwork(actorNetwork);
summary(actorNetwork)==> Initialized: trueNumber of learnables: 16Inputs:1   'input'   3 features

使用指定的深度神经网络、环境明细对象以及与状态观测通道相关联的网络输入名称,创建 Actor 对象。

actor = rlContinuousDeterministicActor(actorNetwork,obsInfo,actInfo);

更多信息,请参阅 rlContinuousDeterministicActor 。

用随机输入状态观测数据检查 Actor。

getAction(actor,{rand(obsInfo.Dimension)})==> ans = 1x1 cell array{[-0.3408]}

(5)创建 DDPG 智能体

使用指定的 Actor 和 Critic 对象创建 DDPG 智能体。

agent = rlDDPGAgent(actor,critic);

更多信息,请参阅 rlDDPGAgent 。

指定智能体、Actor 和 Critic 。

agent.SampleTime = Ts;agent.AgentOptions.TargetSmoothFactor = 1e-3;
agent.AgentOptions.DiscountFactor = 1.0;
agent.AgentOptions.MiniBatchSize = 64;
agent.AgentOptions.ExperienceBufferLength = 1e6; agent.AgentOptions.NoiseOptions.Variance = 0.3;
agent.AgentOptions.NoiseOptions.VarianceDecayRate = 1e-5;agent.AgentOptions.CriticOptimizerOptions.LearnRate = 1e-03;
agent.AgentOptions.CriticOptimizerOptions.GradientThreshold = 1;
agent.AgentOptions.ActorOptimizerOptions.LearnRate = 1e-04;
agent.AgentOptions.ActorOptimizerOptions.GradientThreshold = 1;

或者,也可以使用 rlDDPGAgentOptions 对象指定智能体选项。

用随机输入状态观测结果检查智能体。

getAction(agent,{rand(obsInfo.Dimension)})==> ans = 1x1 cell array{[-0.7926]}

(6)训练智能体

首先要指定训练选项。本例中使用以下选项:

  1. 每次训练最多运行 5000 回合。指定每回合最多持续 ceil ( T f / T s T_f/T_s Tf/Ts) ( 即 200 )个时间步
  2. 在 "回合管理器 "对话框中显示训练进度(设置 Plots 选项),并禁用命令行显示( 将 Verbose 选项设为 false )
  3. 当智能体在连续 20 个回合中获得的平均累积奖励 > 800 时,停止训练。此时,智能体可以控制水箱中的水位

更多信息,请参阅 rlTrainingOptions 。

trainOpts = rlTrainingOptions(...MaxEpisodes=5000, ...MaxStepsPerEpisode=ceil(Tf/Ts), ...ScoreAveragingWindowLength=20, ...Verbose=false, ...Plots="training-progress",...StopTrainingCriteria="AverageReward",...StopTrainingValue=800);

使用函数 train 训练智能体。训练是一个计算密集型过程,需要几分钟才能完成。为节省运行此示例的时间,请将 doTraining 设为 false,以加载预训练过的智能体。要自己训练代理,可将 doTraining 设为 true。

doTraining = false;if doTraining% Train the agent.trainingStats = train(agent,env,trainOpts);
else% Load the pretrained agent for the example.load("WaterTankDDPG.mat","agent")
end

在这里插入图片描述

(7)验证 DDPG 智能体

根据模型仿真验证 DDPG 智能体。由于重置函数会随机化参考值,因此要固定随机数种子,以确保可重复性。

rng(1)

在环境中仿真,并将输出返回。

simOpts = rlSimulationOptions(MaxSteps=ceil(Tf/Ts),StopOnError="on");
experiences = sim(env,agent,simOpts);

在这里插入图片描述

(8)本地重置函数

function in = localResetFcn(in)% Randomize reference signal
blk = sprintf("rlwatertank/Desired \nWater Level");
h = 3*randn + 10;
while h <= 0 || h >= 20h = 3*randn + 10;
end
in = setBlockParameter(in,blk,Value=num2str(h));% Randomize initial height
h = 3*randn + 10;
while h <= 0 || h >= 20h = 3*randn + 10;
end
blk = "rlwatertank/Water-Tank System/H";
in = setBlockParameter(in,blk,InitialCondition=num2str(h));end

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/274668.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于深度学习的番茄叶片病害检测系统(含UI界面、yolov8、Python代码、数据集)

项目介绍 项目中所用到的算法模型和数据集等信息如下&#xff1a; 算法模型&#xff1a;     yolov8 yolov8主要包含以下几种创新&#xff1a;         1. 可以任意更换主干结构&#xff0c;支持几百种网络主干。 数据集&#xff1a;     网上下载的数据集&#x…

03_渲染进程调用node

我们先创建一个文件夹及文件&#xff0c;并且在 html 引入 JS 文件。 在 render.js 里面输入以下内容&#xff1a; let fs require(fs) // let是在当前代码块有效console.log(fs) // 将fs对象的内容打印到控制台供调试和查看 fs 模块&#xff1a;对文件系统进行操作&#xf…

对GIS与游戏引擎(UE4 或 U3D)结合的看法

GIS与游戏引擎结合&#xff0c;这在6年前就已经很多公司在进行探索了&#xff0c;经过这几年的发展&#xff0c;结合当前的政策&#xff0c;从以下几方面说一下我的看法&#xff1a; 1.GIS客户都是特殊单位及领域。2018年后&#xff0c;国内已经对国产化有明确要求了&#xff0…

测试一下 Anthropic 宣称超过 GPT-4 的 Claude 3 Opus

测试一下 Anthropic 宣称超过 GPT-4 的 Claude 3 Opus 0. 引言1. 测试 Claude 3 Opus3. 试用 api key 限制 0. 引言 今天测试一下 Anthropic 发布的 Claude 3 Opus。 3月4日&#xff0c;Anthropic 宣布推出 Claude 3 型号系列&#xff0c;该系列在广泛的认知任务中树立了新的…

Java客户端调用elasticsearch进行深度分页查询 (search_after)

Java客户端调用elasticsearch进行深度分页查询 &#xff08;search_after&#xff09; 一. 代码二. 测试结果 前言 这是我在这个网站整理的笔记,有错误的地方请指出&#xff0c;关注我&#xff0c;接下来还会持续更新。 作者&#xff1a;神的孩子都在歌唱 具体的Search_after解…

keepalived原理以及lvs、nginx跟keeplived的运用

keepalived基础 keepalived的原理是根据vrrp协议&#xff08;主备模式&#xff09;去设定的 vrrp技术相关原理 状态机&#xff1b; 优先级0~255 心跳线1秒 vrrp工作模式 双主双备模式 VRRP负载分担过程 vrrp安全认证&#xff1a;使用共享密匙 keepalived工具介绍 keepal…

CSS 【详解】响应式布局(明天内容)

响应式布局&#xff1a; 同一页面在不同的屏幕上有不同的布局&#xff0c;即一套代码自适应不同的屏幕。 常用 单位&#xff1a; 像素&#xff08;px&#xff09;&#xff1a;像素是最常用的长度单位&#xff0c;它表示屏幕上的一个物理像素点。例如&#xff0c;width: 200px; …

如何导入非同一级的py文件里的函数

我正在main_cnn.py里写代码&#xff0c;要到入models文件夹下的resnet50里的CustomResNet50函数。应该怎么导入。 如果 models 文件夹与我们main_cnn.py的主文件不在同一级目录下&#xff0c;而是在上一级目录&#xff0c;你可以这样导入&#xff1a; from ..models.resnet50…

【NR 定位】3GPP NR Positioning 5G定位标准解读(十二)-Multi-RTT定位

前言 3GPP NR Positioning 5G定位标准&#xff1a;3GPP TS 38.305 V18 3GPP 标准网址&#xff1a;Directory Listing /ftp/ 【NR 定位】3GPP NR Positioning 5G定位标准解读&#xff08;一&#xff09;-CSDN博客 【NR 定位】3GPP NR Positioning 5G定位标准解读&#xff08;…

mysql5.6---windows和linux安装教程和忘记密码怎么办

一、windows安装 1.完成解压 解压完成之后将其放到你喜欢的地址当中去&#xff0c;这里我默认放在了D盘&#xff0c;这是我的根目录 2.配置环境变量 我的电脑->属性->高级->环境变量->系统变量 选择PATH,在其后面添加: (注意自己的安装地址) D:\mysql-5.6.49…

基于EasyCVR视频技术的流媒体视频融合与汇聚管理系统建设方案

流媒体视频融合与汇聚管理系统可以实现对各类模块化服务进行统一管理和配置等操作&#xff0c;可实现对应用服务的整合、管理及共享&#xff0c;以标准接口的方式&#xff0c;业务平台及其他第三方业务平台可以方便地调用各类数据&#xff0c;具有开放性和可扩展性。在流媒体视…

Android Studio轮播图使用失败怎么办【已解决】

Android Studio轮播图使用失败怎么办 1.在gethub上面搜索轮播图 2.选择要使用的轮播图 3.查看该轮播图的配置方法 4.复制该依赖放入build.gradle中 5.重新构建 6.使用banner 发现没有报错了 7.参考网址 https://github.com/youth5201314/banner

Java代码审计安全篇-SSRF(服务端请求伪造)漏洞

前言&#xff1a; 堕落了三个月&#xff0c;现在因为被找实习而困扰&#xff0c;着实自己能力不足&#xff0c;从今天开始 每天沉淀一点点 &#xff0c;准备秋招 加油 注意&#xff1a; 本文章参考qax的网络安全java代码审计&#xff0c;记录自己的学习过程&#xff0c;还希望各…

Observer 模式

文章目录 &#x1f4a1;问题引入&#x1f4a1;概念&#x1f4a1;例子&#x1f4a1;总结 &#x1f4a1;问题引入 假设有一个在线商店系统&#xff0c;用户可以订阅商品的库存通知。当某个商品的库存数量发生变化时&#xff0c;系统会自动发送通知给所有订阅了该商品的用户。设计…

鸿蒙原生应用元服务开发-WebGL网页图形库开发无着色器绘制2D图形

无着色器绘制2D图形 使用WebGL开发时&#xff0c;为保证界面图形显示效果&#xff0c;请使用真机运行。 此场景为未使用WebGL绘制的2D图形&#xff08;CPU绘制非GPU绘制&#xff09;。开发示例如下&#xff1a; 1.创建页面布局。index.hml示例如下&#xff1a; <div class…

【C#】【SAP2000】读取SAP2000中frame单元列表到Grasshopper中

private void RunScript(bool build, ref object p1, ref object p2, ref object Profile, ref object stressRatio, ref object temperatureLoad, ref object displacement, ref object frameList){if (build true){// 声明变量int ret;int Numit 0;int[] ObjType new int[…

Linux——线程(3)

在上一篇博客中&#xff0c;我介绍了关于Linux系统中pthread库线程的接口使用以 及对于pthread库的理解。但是我们单单会使用多线程的接口还不够&#xff0c;因为 在使用多线程解决问题的时候&#xff0c;由于进程中的数据对于其中的线程来说大 多是共享的&#xff0c;这也势必…

css3实现3D立方体旋转特效源码

源码介绍 CSS3自动旋转正方体3D特效是一款基于css3 keyframes属性制作的图片相册自动旋转立方体特效 效果展示 下载地址 css3实现3D立方体旋转特效代码

发那科数控机床FanucCNC(NCGuide)仿真模拟器配置和数据采集测试

开发日记3.12 此篇用于记录发那科数控机床(Fanuc CNC)采集程序开发中&#xff0c;用虚拟机做测试时&#xff0c;虚拟机的配置和使用以支持采集软件开发和测试。 配置虚拟机使用仿真软件 下载VMware15 「链接&#xff1a;https://pan.xunlei.com/s/VNsl9Gmb14ANBiiNlsT7vA2LA…

01 THU大模型之基础入门

1. NLP Basics Distributed Word Representation词表示 Word representation: a process that transform the symbols to the machine understandable meanings 1.1 How to represent the meaning so that the machine can understand Compute word similarity 计算词相似度 …