基于深度学习的番茄叶片病害检测系统(含UI界面、yolov8、Python代码、数据集)

在这里插入图片描述

在这里插入图片描述

项目介绍

项目中所用到的算法模型和数据集等信息如下:

算法模型:
    yolov8

    yolov8主要包含以下几种创新:
        1. 可以任意更换主干结构,支持几百种网络主干。

数据集:
    网上下载的数据集,格式都已转好,可直接使用。

以上是本套代码的整体算法架构和对目标检测模型的修改说明,这些模型修改可以为您的 毕设、作业等提供创新点和增强模型性能的功能

如果要是需要更换其他的检测模型,请私信。

注:本项目提供所用到的所有资源,包含 环境安装包、训练代码、测试代码、数据集、视频文件、 界面UI文件等。


本人声明:所有的系统,都是本人自己编写代码,我不是二次售卖的二手贩子,我是有售后的,本人亲自语音或者远程解决问题。最近发现有一些专门卖毕设的,购买我的系统后,进行二次售卖,而且价格贵很多,大家注意辨别。我敢保证说,外面见到的有这种美观界面的,都是从我这购买后,要么稍微改了一丢丢布局,要么,一点都没改,就直接卖的,都是打着有售后的旗子,最后啥也不是,卖给你就没有后续了。

不要问我是怎么知道的,有人从二手贩子那买了后,没有售后不管了,最后找到我这来了。。。。😂😂😂😂😂😂

深度学习项目相对来说部署环境,运行比较麻烦,自己不懂,且没有售后,寸步难行。希望大家不要被骗。


项目简介

本文将详细介绍如何以官方yolov8为主干,实现对鱼类的检测识别,且利用PyQt5设计了简约的系统UI界面。在界面中,您可以选择自己的视频文件、图片文件进行检测。此外,您还可以更换自己训练的主干模型,进行自己数据的检测。

该系统界面优美,检测精度高,功能强大。它具备多目标实时检测,同时可以自由选择感兴趣的检测目标。

本博文提供了完整的Python程序代码和使用教程,适合新入门的朋友参考。您可以在文末的下载链接中获取完整的代码资源文件。以下是本博文的目录:

目录

  • 项目介绍
  • 项目简介
  • 效果展示:
  • 🌟一、环境安装
  • 🌟二、数据集介绍
  • 🌟三、 目标检测介绍
    • yolov8相关介绍
  • 四、 yolov8训练步骤
    • 五、 yolov8评估步骤
    • 六、 训练结果
  • 🌟下载链接

效果展示:

功能:
1. 支持单张图片识别
2. 支持遍历文件夹识别
3. 支持识别视频文件
4. 支持结果导出(xls、csv两种格式)
5. 支持切换检测到的目标

https://www.bilibili.com/video/BV14F4m1V7ep


🌟一、环境安装

本项目提供所有需要的环境安装包(python、pycharm、cuda、torch等),可以直接按照视频讲解进行安装。讲解是以其他项目为例的,但是都是通用的,按照视频步骤操作即可。 点击上方效果展示的视频,跳转到B站就能看到环境安装视频。
在这里插入图片描述

上面这个方法,是比较便捷的安装方式(省去了安装细节),按照我的视频步骤和提供的安装包安装即可,如果要是想要多学一点东西,可以按照下面的安装方式走一遍,会更加熟悉。

环境安装方法2:
追求快速安装环境的,只看上面即可!!!

下面列出了5个步骤,是完全从0开始安装(可以理解为是一台新电脑,没有任何环境),如果某些步骤已经安装过的可以跳过。下面的安装步骤带有详细的视频讲解和参考博客,一步一步来即可。另外视频中讲解的安装方法是通用的,可用于任何项目

  1. python环境安装:B站视频讲解
  2. cuda、cudnn安装:B站视频讲解
  3. torch安装: B站视频讲解
  4. pycharm安装: B站视频讲解
  5. 第三方依赖包安装: B站视频讲解

按照上面的步骤安装完环境后,就可以直接运行程序,看到效果了。


🌟二、数据集介绍

数据集总共包含以下类别,且已经分好 train、val、test文件夹,也提供转好的yolo格式的标注文件,可以直接训练使用。

数据样式如下:

在这里插入图片描述


🌟三、 目标检测介绍

yolov8相关介绍

YOLOv8 是一个 SOTA 模型,它建立在以前 YOLO 版本的成功基础上,并引入了新的功能和改进,以进一步提升性能和灵活性。具体创新包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行。

不过 ultralytics 并没有直接将开源库命名为 YOLOv8,而是直接使用 ultralytics 这个词,原因是 ultralytics 将这个库定位为算法框架,而非某一个特定算法,一个主要特点是可扩展性。其希望这个库不仅仅能够用于 YOLO 系列模型,而是能够支持非 YOLO 模型以及分类分割姿态估计等各类任务。
总而言之,ultralytics 开源库的两个主要优点是:

  • 融合众多当前 SOTA 技术于一体

  • 未来将支持其他 YOLO 系列以及 YOLO 之外的更多算法

在这里插入图片描述

网络结构如下:
在这里插入图片描述


四、 yolov8训练步骤

此代码的训练步骤极其简单,不需要修改代码,直接通过cmd就可以命令运行,命令都已写好,直接复制即可,命令如下图:
在这里插入图片描述

下面这条命令是 训练 以 yolov8的cspdarknet53为主干模型的的命令,复制下来,直接就可以运行,看到训练效果。

python ./train.py --epochs 300 --yaml ultralytics/cfg/models/v8/cls_self/yolov8-cls.yaml --imgsz 300 --cfg ultralytics/cfg/default.yaml --data ../../data/corn --weights weights/yolov8s.pt --workers 8 --batch 128

执行完上述命令后,即可完成训练,训练过程如下:
在这里插入图片描述

下面是对命令中各个参数的详细解释说明:

  • python: 这是Python解释器的命令行执行器,用于执行后续的Python脚本。

  • ./train.py: 这是要执行的Python脚本文件的路径和名称,它是用于训练目标检测模型的脚本。

  • --epochs 500: 这是训练的总轮数(epochs),指定为500,表示训练将运行500个轮次。

  • --cfg models/yolov8-cls-resnet18.yaml: 这是YOLO模型的配置文件的路径和名称,它指定了模型的结构和参数设置。

  • --hyp data/hyps/hyp.scratch-low.yaml: 这是超参数文件的路径和名称,它包含了训练过程中的各种超参数设置,如学习率、权重衰减等。

  • --data ../../data/data: 这是数据集的配置文件的路径和名称,它指定了训练数据集的相关信息,如类别标签、图像路径等。

  • --weight weights/yolov5s.pt: 这是预训练权重文件的路径和名称,用于加载已经训练好的模型权重以便继续训练或进行迁移学习。

  • --workers 4: 这是用于数据加载的工作进程数,指定为4,表示使用4个工作进程来加速数据加载。

  • --batch 16: 这是每个批次的样本数,指定为16,表示每个训练批次将包含16个样本。

通过运行上面这个命令,您将使用YOLOv5模型对目标检测任务进行训练,训练500个轮次,使用指定的配置文件、超参数文件、数据集配置文件和预训练权重。同时,使用4个工作进程来加速数据加载,并且每个训练批次包含16个样本。


五、 yolov8评估步骤

评估步骤同训练步骤一样,执行1行语句即可,注意--weights需要变为自己想要测试的模型路径, VOC_fruit.yaml替换为自己的数据集的yaml文件。

python ./val.py --data  ../../data/corn--weight ../weights/YOLOv8-cls/weights/best.pt --imgsz 300

评估结果如下:
在这里插入图片描述


六、 训练结果

我们每次训练后,会在 run/train 文件夹下出现一系列的文件,如下图所示:
在这里插入图片描述


🌟下载链接

   该代码采用Pycharm+Python3.8开发,经过测试能成功运行,运行界面的主程序为main.py,提供用到的所有程序。为确保程序顺利运行,请按照requirements.txt配置Python依赖包的版本。Python版本:3.8,为避免出现运行报错,请勿使用其他版本,详见requirements.txt文件;

    若您想获得博文中涉及的实现完整全部程序文件(包括训练代码、测试代码、训练数据、测试数据、视频,py、 UI文件等,如下图),这里已打包上传至博主的面包多平台,可通过下方项目讲解链接中的视频简介部分下载,完整文件截图如下:
在这里插入图片描述

项目演示讲解链接:B站

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/274667.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

03_渲染进程调用node

我们先创建一个文件夹及文件,并且在 html 引入 JS 文件。 在 render.js 里面输入以下内容: let fs require(fs) // let是在当前代码块有效console.log(fs) // 将fs对象的内容打印到控制台供调试和查看 fs 模块:对文件系统进行操作&#xf…

对GIS与游戏引擎(UE4 或 U3D)结合的看法

GIS与游戏引擎结合,这在6年前就已经很多公司在进行探索了,经过这几年的发展,结合当前的政策,从以下几方面说一下我的看法: 1.GIS客户都是特殊单位及领域。2018年后,国内已经对国产化有明确要求了&#xff0…

测试一下 Anthropic 宣称超过 GPT-4 的 Claude 3 Opus

测试一下 Anthropic 宣称超过 GPT-4 的 Claude 3 Opus 0. 引言1. 测试 Claude 3 Opus3. 试用 api key 限制 0. 引言 今天测试一下 Anthropic 发布的 Claude 3 Opus。 3月4日,Anthropic 宣布推出 Claude 3 型号系列,该系列在广泛的认知任务中树立了新的…

Java客户端调用elasticsearch进行深度分页查询 (search_after)

Java客户端调用elasticsearch进行深度分页查询 (search_after) 一. 代码二. 测试结果 前言 这是我在这个网站整理的笔记,有错误的地方请指出,关注我,接下来还会持续更新。 作者:神的孩子都在歌唱 具体的Search_after解…

keepalived原理以及lvs、nginx跟keeplived的运用

keepalived基础 keepalived的原理是根据vrrp协议(主备模式)去设定的 vrrp技术相关原理 状态机; 优先级0~255 心跳线1秒 vrrp工作模式 双主双备模式 VRRP负载分担过程 vrrp安全认证:使用共享密匙 keepalived工具介绍 keepal…

CSS 【详解】响应式布局(明天内容)

响应式布局: 同一页面在不同的屏幕上有不同的布局,即一套代码自适应不同的屏幕。 常用 单位: 像素(px):像素是最常用的长度单位,它表示屏幕上的一个物理像素点。例如,width: 200px; …

如何导入非同一级的py文件里的函数

我正在main_cnn.py里写代码,要到入models文件夹下的resnet50里的CustomResNet50函数。应该怎么导入。 如果 models 文件夹与我们main_cnn.py的主文件不在同一级目录下,而是在上一级目录,你可以这样导入: from ..models.resnet50…

【NR 定位】3GPP NR Positioning 5G定位标准解读(十二)-Multi-RTT定位

前言 3GPP NR Positioning 5G定位标准:3GPP TS 38.305 V18 3GPP 标准网址:Directory Listing /ftp/ 【NR 定位】3GPP NR Positioning 5G定位标准解读(一)-CSDN博客 【NR 定位】3GPP NR Positioning 5G定位标准解读(…

mysql5.6---windows和linux安装教程和忘记密码怎么办

一、windows安装 1.完成解压 解压完成之后将其放到你喜欢的地址当中去,这里我默认放在了D盘,这是我的根目录 2.配置环境变量 我的电脑->属性->高级->环境变量->系统变量 选择PATH,在其后面添加: (注意自己的安装地址) D:\mysql-5.6.49…

基于EasyCVR视频技术的流媒体视频融合与汇聚管理系统建设方案

流媒体视频融合与汇聚管理系统可以实现对各类模块化服务进行统一管理和配置等操作,可实现对应用服务的整合、管理及共享,以标准接口的方式,业务平台及其他第三方业务平台可以方便地调用各类数据,具有开放性和可扩展性。在流媒体视…

Android Studio轮播图使用失败怎么办【已解决】

Android Studio轮播图使用失败怎么办 1.在gethub上面搜索轮播图 2.选择要使用的轮播图 3.查看该轮播图的配置方法 4.复制该依赖放入build.gradle中 5.重新构建 6.使用banner 发现没有报错了 7.参考网址 https://github.com/youth5201314/banner

Java代码审计安全篇-SSRF(服务端请求伪造)漏洞

前言: 堕落了三个月,现在因为被找实习而困扰,着实自己能力不足,从今天开始 每天沉淀一点点 ,准备秋招 加油 注意: 本文章参考qax的网络安全java代码审计,记录自己的学习过程,还希望各…

Observer 模式

文章目录 💡问题引入💡概念💡例子💡总结 💡问题引入 假设有一个在线商店系统,用户可以订阅商品的库存通知。当某个商品的库存数量发生变化时,系统会自动发送通知给所有订阅了该商品的用户。设计…

鸿蒙原生应用元服务开发-WebGL网页图形库开发无着色器绘制2D图形

无着色器绘制2D图形 使用WebGL开发时&#xff0c;为保证界面图形显示效果&#xff0c;请使用真机运行。 此场景为未使用WebGL绘制的2D图形&#xff08;CPU绘制非GPU绘制&#xff09;。开发示例如下&#xff1a; 1.创建页面布局。index.hml示例如下&#xff1a; <div class…

【C#】【SAP2000】读取SAP2000中frame单元列表到Grasshopper中

private void RunScript(bool build, ref object p1, ref object p2, ref object Profile, ref object stressRatio, ref object temperatureLoad, ref object displacement, ref object frameList){if (build true){// 声明变量int ret;int Numit 0;int[] ObjType new int[…

Linux——线程(3)

在上一篇博客中&#xff0c;我介绍了关于Linux系统中pthread库线程的接口使用以 及对于pthread库的理解。但是我们单单会使用多线程的接口还不够&#xff0c;因为 在使用多线程解决问题的时候&#xff0c;由于进程中的数据对于其中的线程来说大 多是共享的&#xff0c;这也势必…

css3实现3D立方体旋转特效源码

源码介绍 CSS3自动旋转正方体3D特效是一款基于css3 keyframes属性制作的图片相册自动旋转立方体特效 效果展示 下载地址 css3实现3D立方体旋转特效代码

发那科数控机床FanucCNC(NCGuide)仿真模拟器配置和数据采集测试

开发日记3.12 此篇用于记录发那科数控机床(Fanuc CNC)采集程序开发中&#xff0c;用虚拟机做测试时&#xff0c;虚拟机的配置和使用以支持采集软件开发和测试。 配置虚拟机使用仿真软件 下载VMware15 「链接&#xff1a;https://pan.xunlei.com/s/VNsl9Gmb14ANBiiNlsT7vA2LA…

01 THU大模型之基础入门

1. NLP Basics Distributed Word Representation词表示 Word representation: a process that transform the symbols to the machine understandable meanings 1.1 How to represent the meaning so that the machine can understand Compute word similarity 计算词相似度 …

新品发布:广州大彩科技COF系列2.1寸480*480 IPS 串口屏发布!

一、产品介绍 该产品是一款2.1寸分辨率为 480480的医用级工业组态串口屏&#xff0c;拥有2.1寸IPS液晶屏&#xff0c;分辨率有480480&#xff08;实际显示为R240内切圆区域&#xff09;&#xff0c;支持电容触摸。采用COF超薄结构工艺设计&#xff0c;用户安装便捷灵活&#x…