【C语言】深入了解指针(1),进来小白,出去大佬!

一,内存和地址

1,内存

在讲内存和地址之前,我们先举个案例

假设有⼀栋宿舍楼,把你放在楼⾥,楼上有100个房间,但是房间没有编号,你的⼀个朋友来找你玩, 如果想找到你,就得挨个房⼦去找,这样效率很低,但是我们如果根据楼层和楼层的房间的情况,给 每个房间编上号,如:

一楼:101 102 103 ...
二楼:201 202 203 ...
三楼:...

有了房间号,如果你的朋友得到房间号,就可以快速的找房间,找到你;

让我们把上面例子类比一下,会得到什么呢?

我们知道计算上CPU(中央处理器)在处理数据的时候,需要的数据是在内存中读取的,处理后的数 据也会放回内存中,那我们买电脑的时候,电脑上内存是8GB/16GB/32GB等,那这些内存空间如何⾼ 效的管理呢?

如图:其实也是把内存划分为⼀个个的内存单元,每个内存单元的⼤⼩取1个字节

先来说计算机中常⻅的单位: 

bit - ⽐特位         1byte = 8bit
byte - 字节          1KB = 1024byte
KB                   1MB = 1024KB
MB                   1GB = 1024MB
GB                   1TB = 1024GB
TB                   1PB = 1024TB
PB

 其中,每个内存单元,相当于⼀个学⽣宿舍,⼀ 个⼈字节空间⾥⾯能放8个⽐特位,就好⽐同学们 住的⼋⼈间,每个⼈是⼀个⽐特位

每个内存单元也都有⼀个编号(这个编号就相当 于宿舍房间的⻔牌号),有了这个内存单元的编 号,CPU就可以快速找到⼀个内存空间

⽣活中我们把⻔牌号也叫地址,在计算机中我们 把内存单元的编号也称为地址。C语⾔中给地址起 了新的名字叫:指针

所以我们可以理解为: 内存单元的编号 == 地址 == 指针

二,指针变量和地址

1,取地址操作符(&)

 理解了内存和地址的关系,我们再回到C语⾔,在C语⾔中创建变量其实就是向内存申请空间,⽐如:

#include <stdio.h>
int main()
{int a = 10;return 0;
}

上述的代码就是创建了整型变量a,内存中 申请4个字节,⽤于存放整数10,其中每个字节都 有地址 ;

那我们如何能得到a的地址呢?

这⾥就得学习⼀个操作符(&)-取地址操作符

#include <stdio.h>
int main()
{int a = 100;&a;      //取出a的地址printf("%p", &a);return 0;
}

运行结果(十六进制) 

 &a取出的是a所占4个字节中地址较⼩的字节的地址

虽然整型变量占⽤4个字节,我们只要知道了第⼀个字节地址,顺藤摸⽠访问到4个字节的数据也是可⾏的

2,针变量和解引⽤操作符(*)

2_1,指针变量

那我们通过取地址操作符(&)拿到的地址是⼀个数值,⽐如:0x006FEF80,这个数值有时候也是需要 存储起来,⽅便后期再使⽤的,那我们把这样的地址值存放在哪⾥呢?答案是:指针变量中

举例:

#include <stdio.h>
int main()
{int a = 100;int* p = &a; //取出a的地址并存储到指针变量p中return 0;
}

指针变量也是⼀种变量,这种变量就是⽤来存放地址的,存放在指针变量中的值都会理解为地址

2_2,拆解了解指针(重点!)

int a = 10;
int * p = &a;

这⾥p左边写的是 int* , * 是在说明p是指针变量,⽽前⾯的 int 是在说明p指向的是整型(int) 类型的对象 ;

搞清楚这三个的区别:

p            指针变量本身*p           等于==‘a’&a           ‘a’的地址

2_3,解引⽤操作符

我们将地址保存起来,未来是要使⽤的,那怎么使⽤呢?

在现实⽣活中,我们使⽤地址要找到⼀个房间,在房间⾥可以拿去或者存放物品。

C语⾔中其实也是⼀样的,我们只要拿到了地址(指针),就可以通过地址(指针)找到地址(指针) 指向的对象,这⾥必须学习⼀个操作符叫解引⽤操作符(*)

#include <stdio.h>
int main()
{int a = 100;int* p = &a;*p = 0;return 0;
}

*p 的意思就是通过p中存放的地址,找到指向的空间, *p其实就是a变量了;所以*p = 0,这个操作符是把a改成了0

这样对a的修改,就多了⼀种的途径,写代码就会更加灵活

2_4,指针变量的大小

32位机器假设有32根地址总线,每根地址线出来的电信号转换成数字信号后 是1或者0,那我们把32根地址线产⽣的2进制序列当做⼀个地址,那么⼀个地址就是32个bit位,需要4 个字节才能存储。

如果指针变量是⽤来存放地址的,那么指针变的⼤⼩就得是4个字节的空间才可以。 同理64位机器,假设有64根地址线,⼀个地址就是64个⼆进制位组成的⼆进制序列,存储起来就需要 8个字节的空间,指针变的⼤⼩就是8个字节

#include <stdio.h>//32位平台下地址是32个bit位(即4个字节)//64位平台下地址是64个bit位(即8个字节)
int main()
{printf("%zd\n", sizeof(char*));printf("%zd\n", sizeof(short*));printf("%zd\n", sizeof(int*));printf("%zd\n", sizeof(double*));return 0;
}

结论:

• 32位平台下地址是32个bit位,指针变量⼤⼩是4个字节

• 64位平台下地址是64个bit位,指针变量⼤⼩是8个字节

• 注意指针变量的⼤⼩和类型是⽆关的,只要指针类型的变量,在相同的平台下,⼤⼩都是相同的 

三,指针变量意义、

1,解引用符

指针的类型决定了,对指针解引⽤的时候有多⼤的权限(⼀次能操作⼏个字节)

如: char* 的指针解引⽤就只能访问⼀个字节,⽽ int* 的指针的解引⽤就能访问四个字节 

 2,指针+-整数

先看代码

#include <stdio.h>
int main()
{int n = 10;char* pc = (char*)&n;int* pi = &n;printf("  &n=%p\n", &n);printf("  pc=%p\n", pc);printf("pc+1=%p\n", pc + 1);printf("  pi=%p\n", pi);printf("pi+1=%p\n", pi + 1);return 0;
}

 我们可以看出, char* 类型的指针变量+1跳过1个字节, int* 类型的指针变量+1跳过了4个字节。 这就是指针变量的类型差异带来的变化。

结论:指针的类型决定了指针向前或者向后⾛⼀步有多⼤(距离)

3,void* 指针

在指针类型中有⼀种特殊的类型是 void* 类型的,可以理解为⽆具体类型的指针(或者叫泛型指 针),这种类型的指针可以⽤来接受任意类型地址。但是也有局限性, void* 类型的指针不能直接进 ⾏指针的+-整数和解引⽤的运算

例:

#include <stdio.h>
int main()
{int a = 10;int* pa = &a;char* pc = &a;return 0;
}

 

在上⾯的代码中,将⼀个int类型的变量的地址赋值给⼀个char*类型的指针变量。编译器给出了⼀个警告,是因为类型不兼容。⽽使⽤void*类型就不会有这样的问题

例:

#include <stdio.h>
int main()
{int a = 10;void* pa = &a;void* pc = &a;*pa = 10;*pc = 0;return 0;
}

这⾥我们可以看到, void* 类型的指针可以接收不同类型的地址,但是⽆法直接进⾏指针运算 

那么 void* 类型的指针到底有什么⽤呢?

⼀般 void* 类型的指针是使⽤在函数参数的部分,⽤来接收不同类型数据的地址,这样的设计可以 实现泛型编程的效果,后续会讲到; 

四,小结

 以上就是关于指针(1)的内容了,具体还需宝子们去实践,如果觉得该博客对你有用的话,希望一键三连,点个关注不迷路,谢谢支持!

后续马上更!后续马上更!后续马上更!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/275093.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【CSP试题回顾】201812-1-小明上学

CSP-201812-1-小明上学 解题代码 #include <iostream> #include <vector> using namespace std;long long r, y, g, n, k, t, sumTime;int main() {cin >> r >> y >> g >> n;for (int i 0; i < n; i){cin >> k >> t;if …

Sora爆火,多模态大模型背后的存算思考

近日&#xff0c;随着OpenAI推出Sora&#xff0c;人工智能从文本到文本、文本到图片的生成模式&#xff0c;进阶到文生视频。其文本到视频的模型能够生成长达一分钟的视频&#xff0c;在保持视觉质量的同时并严格遵循用户的提示&#xff0c;使得“扔进一本小说&#xff0c;生成…

解决Ubuntu 16.04/18.04 图形化界面异常、鼠标光标消失、鼠标变成叉叉等问题

bug场景&#xff1a; 一切从一次换源说起…叭叭叭 这篇文章解决的问题&#xff1a; 1.换源&#xff0c;默认源太慢&#xff0c;换成可用的阿里云的源 2.apt-get failed to …问题 3.图形化异常问题 4.get unmet dependence 问题 5. 鼠标光标消失和鼠标变成叉叉问题。 解决方…

ONLYOFFICE 文档开发者版,为您的平台带来强大的文档编辑功能

你是否在寻找一个可自主部署、可定制、易集成的文档编辑器解决方案&#xff1f;如果是这样&#xff0c;那么ONLYOFFICE 文档开发者版&#xff0c;也许就是你想要的答案。下面让我们一起来看看它有哪些特点&#xff0c;并能为您带来哪些好处。 什么是 ONLYOFFICE 文档 ONLYOFFI…

c#递归函数

在 C#中&#xff0c;递归函数是指在函数内部直接或间接调用自身的函数。递归函数在解决一些问题时非常有用&#xff0c;例如遍历树形结构、递归计算等。 using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks…

Github上哪些好用的工具

专注于web漏洞挖掘、内网渗透、免杀和代码审计&#xff0c;感谢各位师傅的关注&#xff01;网安之路漫长&#xff0c;与君共勉&#xff01; Qexo-爱写博客的师傅强烈推荐 漂亮的 Hexo 静态博客编辑器。该项目是基于 Django 的 Hexo 静态博客管理后台&#xff0c;支持文章管理、…

Python实战:采集全国5A景点名单

本文将以采集全国 5A 景点名单为例&#xff0c;详细介绍如何使用 Python 进行数据采集。 本文采集到全国340家5A景区的名单&#xff0c;包括景区名称、地区、 A级、评定年份这些字段。 一、分析数据源 为了获取权威数据&#xff0c;我们来到主管部门的官方网站&#xff0c;在右…

基于Redis自增实现全局ID生成器(详解)

本博客为个人学习笔记&#xff0c;学习网站与详细见&#xff1a;黑马程序员Redis入门到实战 P48 - P49 目录 全局ID生成器介绍 基于Redis自增实现全局ID 实现代码 全局ID生成器介绍 背景介绍 当用户在抢购商品时&#xff0c;就会生成订单并保存到数据库的某一张表中&#…

operator-sdk入门(mac)

1. 安装operator-sdk brew install operator-sdk 2. 安装kubebuilder brew install kubebuilder 3.初始化一个operator脚手架 3.1 新建一个文件夹 redis-operator 3.2 执行初始化 operator-sdk init --domain lyl.com --repo github.com 参数介绍 可以通过operator-sdk --…

Android Gradle 开发与应用 (六) : 创建buildSrc插件和使用命令行创建Gradle插件

1. 前言 前文中&#xff0c;我们介绍了在Android中&#xff0c;如何基于Gradle 8.2&#xff0c;创建Gradle插件。这篇文章&#xff0c;我们以buildSrc的方式来创建Gradle插件。此外&#xff0c;还介绍一种用Cmd命令行的方式&#xff0c;来创建独立的Gradle插件的方式。 1.1 本…

【C#语言入门】17. 事件详解(上)

【C#语言入门】17. 事件详解&#xff08;上&#xff09; 一、初步了解事件 定义&#xff1a;单词Event&#xff0c;译为“事件” 通顺的解释就是**“能够发生的什么事情”**&#xff0c;例如&#xff0c;“苹果”不能发生&#xff0c;但是“公司上市”这件事能发生。在C#中事…

c++之旅——第六弹

大家好啊&#xff0c;这里是c之旅第六弹&#xff0c;跟随我的步伐来开始这一篇的学习吧&#xff01; 如果有知识性错误&#xff0c;欢迎各位指正&#xff01;&#xff01;一起加油&#xff01;&#xff01; 创作不易&#xff0c;希望大家多多支持哦&#xff01; 一,静态成员&…

LeetCode(力扣)算法题_1261_在受污染的二叉树中查找元素

今天是2024年3月12日&#xff0c;可能是因为今天是植树节的原因&#xff0c;今天的每日一题是二叉树&#x1f64f;&#x1f3fb; 在受污染的二叉树中查找元素 题目描述 给出一个满足下述规则的二叉树&#xff1a; root.val 0 如果 treeNode.val x 且 treeNode.left ! n…

【PLC】现场总线和工业以太网汇总

1、 现场总线 1.1 什么是现场总线 1&#xff09;非专业描述&#xff1a; 如下图&#xff1a;“人机界面”一般通过以太网连接“控制器(PLC)”&#xff0c;“控制器(PLC)”通过 “现场总线”和现场设备连接。 2&#xff09;专业描述&#xff08;维基百科&#xff09; 现场总线…

如何设计一个高并发的系统--简谈

设计一个高并发系统可以从下面这些角度来考虑。 所谓设计高并发系统&#xff0c;就是设计一个系统&#xff0c;保证它整体可用的同时&#xff0c;能够处理很高的并发用户请求&#xff0c;能够承受很大的流量冲击。 我们要设计高并发的系统&#xff0c;那就需要处理好一些常见…

安装及管理docker

文章目录 1.Docker介绍2.Docker安装3.免sudo设置4. 使用docker命令5.Images6.运行docker容器7. 管理docker容器8.创建image9.Push Image 1.Docker介绍 Docker 是一个简化在容器中管理应用程序进程的应用程序。容器让你在资源隔离的进程中运行你的应用程序。类似于虚拟机&#…

Linux -- 线程互斥

一 线程互斥的概念 大部分情况&#xff0c;线程使用的数据都是局部变量&#xff0c;变量的地址空间在线程栈空间内&#xff0c;这种情况&#xff0c;变量归属单个线程&#xff0c;其他线程无法获得这种变量。但有时候&#xff0c;很多变量都需要在线程间共享&#xff0c;这样的…

淘宝基于Nginx二次开发的Tengine服务器

最近在群里看到这样一张阿里云网关报错的截图&#xff0c;我保存下来看了下 看到下面有 Tengine提供技术支持&#xff0c;这个Tengine是什么东西呢&#xff1f;我搜索了下似乎是淘宝在nginx的基础上自己改的Web服务器 Tengine还支持OpenResty框架&#xff0c;该框架是基于Ngin…

ARM中专用指令(异常向量表、异常源、异常返回等)

状态寄存器传送指令 CPSR寄存器 状态寄存器传送指令:访问&#xff08;读写&#xff09;CPSR寄存器 读CPSR MRS R1, CPSR R1 CPSR 写CPSR MSR CPSR, #0x10 0x10为User模式&#xff0c;且开启IRQ和FRQ CPSR 0x10 在USER模式下不能随意修改CPSR&#xff0c;因为USER模式…

BUUCTF-----[CISCN 2019 初赛]Love Math

<?php error_reporting(0); //听说你很喜欢数学&#xff0c;不知道你是否爱它胜过爱flag if(!isset($_GET[c])){show_source(__FILE__); }else{//例子 c20-1$content $_GET[c];if (strlen($content) > 80) {die("太长了不会算");}$blacklist [ , \t, \r, \n…