AI-逻辑回归模型

😆😆😆感谢大家的支持~😆😆😆

逻辑回归的应用场景

逻辑回归(Logistic Regression)是机器学习中的 一种分类模型 ,逻辑回归是一种分类算法,虽然名字中带有回归。由于算法的简单和高效,在实际中应用非常广泛☺️

  • 广告点击率,预测用户是否会点击某个广告,是典型的二分类问题。逻辑回归可以根据用户的特征(如年龄、性别、浏览历史等)来预测点击概率。
  • 是否为垃圾邮件,电子邮件服务提供商使用逻辑回归来判断邮件是否为垃圾邮件,根据邮件内容特征和发送者信息来进行分类。
  • 是否患病,在医疗领域,逻辑回归可以帮助预测患者是否有发病的风险,例如基于患者的各种生理指标来预测糖尿病或冠心病的风险。
  • 信用卡账单是否会违约,金融机构利用逻辑回归模型来评估信用卡用户是否存在违约风险,这通常涉及对用户的信用历史、交易行为等进行分析。

逻辑回归是一种用于分类问题的统计模型,特别是适合于处理二分类问题。

逻辑回归的输入🥰

逻辑回归模型的核心在于它使用了一个线性方程作为输入,这个线性方程通常称为logit函数。具体来说,逻辑回归模型首先通过一个线性方程对输入特征进行加权求和,然后使用Sigmoid函数将这个线性方程的结果映射到(0,1)区间内,从而得到一个概率值。这个过程可以用以下数学公式表示:

[ P(y=1|x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1x_1 + \ldots + \beta_nx_n)}} ]

激活函数 

Sigmoid函数的数学表达式通常写为 ( sigma(x) = \frac{1}{1 + e^{-x}} ),其中 ( x ) 是输入变量。

  • 回归的结果输入到sigmoid函数当中

逻辑回归的损失,称之为 对数似然损失 

在逻辑回归中,损失函数是用来度量预测值与真实值之间的差异的。具体来说,逻辑回归通常使用的损失函数是交叉熵(Cross Entropy),这是一种衡量两个概率分布之间差异的函数。交叉熵损失函数可以写成以下形式:

[ L(y, p) = -frac{1}{N} \sum_{i=1}^{N} [y_i \log(p_i) + (1 - y_i) \log(1 - p_i)] ]

其中,( y_i ) 是样本的真实标签(0或1),( p_i ) 是模型预测该样本为正例的概率,N是样本数量。这个损失函数的目的是使得模型输出的概率尽可能接近真实标签。当模型预测的概率与真实标签一致时,损失函数的值会很小;反之,如果预测的概率与真实标签相差较大,则损失函数的值会比较大。

优化同样使用梯度下降优化算法,去减少损失函数的值。这样去更新逻辑回归前面对应算法的权重参数,提升原本属于1类别的概率,降低原本是0类别的概率。 

from sklearn.linear_model import SGDRegressor# 创建SGDRegressor实例
estimator = SGDRegressor(max_iter=1000)# 使用训练数据拟合模型
estimator.fit(x_train, y_train)

 案例🤔

 sklearn.linear_model.LogisticRegression(solver='liblinear', penalty=‘l2’, C = 1.0)

💎l2作为正则化项(惩罚项),以及C=1.0作为正则化强度的倒数。 

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegressionnames = ['Sample code number', 'Clump Thickness', 'Uniformity of Cell Size', 'Uniformity of Cell Shape','Marginal Adhesion', 'Single Epithelial Cell Size', 'Bare Nuclei', 'Bland Chromatin', 'Normal Nucleoli', 'Mitoses', 'Class']data = pd.read_csv("wisconsin.data")
data.head()x = data.iloc[:, 1:10]
x.head()
y = data["Class"]
y.head()x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=22)transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)estimator = LogisticRegression()
estimator.fit(x_train, y_train)y_predict = estimator.predict(x_test)
y_predict
estimator.score(x_test, y_test)

分类评估指标

ROC曲线(Receiver Operating Characteristic Curve):ROC曲线描绘了不同阈值下的真正例率和假正例率,用于评估模型在不同阈值下的表现。在机器学习领域,ROC曲线和AUC指标广泛应用于模型选择和性能评估。

💎ROC曲线,全称为接收者操作特征曲线(Receiver Operating Characteristic Curve),是一种用于评估二分类模型性能的图形化工具。它以假正率(False Positive Rate, FPR)为横轴,真正率(True Positive Rate, TPR)为纵轴绘制而成。ROC曲线上每个点反映了在不同判定阈值下,模型对正类和负类样本分类的能力。通过观察ROC曲线,我们可以直观地了解分类器在不同阈值下的性能表现。

💎AUC(Area Under Curve)则是ROC曲线下的面积,用于量化地衡量模型的整体分类性能。AUC的取值范围在0.5到1之间,其中0.5表示模型没有区分能力,而1表示模型具有完美的分类能力。AUC越大,说明模型在区分正负样本上的表现越好。在实际应用中,一个AUC值接近1的模型通常被认为具有较高的预测准确性和可靠性。

  1. 正样本中被预测为正样本的概率,即:TPR (True Positive Rate)
  2. 负样本中被预测为正样本的概率,即:FPR (False Positive Rate)

ROC 曲线图像中,4 个特殊点的含义:

  1. (0, 0) 表示所有的正样本都预测为错误,所有的负样本都预测正确
  2. (1, 0) 表示所有的正样本都预测错误,所有的负样本都预测错误
  3. (1, 1) 表示所有的正样本都预测正确,所有的负样本都预测错误
  4. (0, 1) 表示所有的正样本都预测正确,所有的负样本都预测正确

绘制 ROC 曲线

在网页某个位置有一个广告图片或者文字,该广告共被展示了 6 次,有 2 次被浏览者点击了。

 

绘制 ROC 曲线:

阈值:0.9

  1. 原本为正例的 1、3 号的样本中 3 号样本被分类错误,则 TPR = ½ = 0.5
  2. 原本为负例的 2、4、5、6 号样本没有一个被分为正例,则 FPR = 0

阈值:0.8

  1. 原本为正例的 1、3 号样本被分类正确,则 TPR = 2/2 = 1
  2. 原本为负例的 2、4、5、6 号样本没有一个被分为正例,则 FPR = 0

 阈值:0.7

  1. 原本为正例的 1、3 号样本被分类正确,则 TPR = 2/2 = 1
  2. 原本为负类的 2、4、5、6 号样本中 2 号样本被分类错误,则 FPR = ¼ = 0.25

 

💎 图像越靠近 (0,1) 点则模型对正负样本的辨别能力就越强且图像越靠近 (0, 1) 点则 ROC 曲线下面的面积就会越大。

  1. 当 AUC= 1 时,该模型被认为是完美的分类器,但是几乎不存在完美分类器

案例 

y=churn['flag']
x=churn[['contract_month','internet_other','streamingtv']]from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=100)from sklearn import linear_model
lr=linear_model.LogisticRegression()
lr.fit(x_train,y_train)y_pred_train=lr.predict(x_train)
y_pred_test=lr.predict(x_test)
import sklearn.metrics as metrics
metrics.accuracy_score(y_train,y_pred_train)
from sklearn.metrics import roc_auc_score
roc_auc_score(y_test, y_pred_test)    # 网格搜索参数
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import GridSearchCV
kfold = StratifiedKFold(n_splits=5, shuffle=True)
lr = linear_model.LogisticRegression()
param_grid = {'solver': ['newton-cg', 'lbfgs', 'liblinear'],'C': [0.001, 0.01, 1, 10, 100],'class_weight':['balanced']}
search = GridSearchCV(lr, param_grid, cv=kfold)
lr = search.fit(x_train, y_train)

LogisticRegression(class_weight='balanced')参数的作用是在拟合模型时自动调整类别权重,以帮助处理不平衡的数据集。当使用class_weight='balanced'时,Scikit-learn的LogisticRegression会在计算损失函数时自动为每个类分配权重,使得较少出现的类别(少数类)获得更高的权重,以此来平衡各类别之间的样本数量差异。这样做有助于改善模型对少数类的识别能力,特别是在数据集中某些类的样本数量远少于其他类时,这种权重调整可以防止模型偏向于多数类。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/276308.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java代码基础算法练习---2024.3.14

其实这就是从我学校的资源,都比较基础的算法题,先尽量每天都做1-2题,练手感。毕竟离我真正去尝试入职好的公司(我指的就是中大厂,但是任重道远啊),仍有一定的时间,至少要等我升本之后…

LarkXR上新了 | Apollo多终端与XR体验的优化创新

作为领先的数字平行世界产品技术提供方,「Paraverse平行云」一直致力于为企业和开发者提供企业级实时云渲染解决方案。其多终端接入产品LarkXR Apollo,基于底层Runtime技术,实现了在Windows、Linux、MacOS、Android、iOS等多种操作系统下&…

机器硬件命令

一、查看机器核数 有以下几种方法 1、lscpu命令 lscpu命令可以显示关于CPU的信息,包括核数、线程数等。在终端中输入以下命令即可查看CPU核数:该命令会输出CPU每个物理插槽的核数。 lscpu | grep "Core(s) per socket" | awk {print $NF} …

[iOS]高版本MacOS运行低版本Xcode

Xcode 版本支持文档 目的: 在MacOS Sonoma 系统上安装 Xcode14.3.1 第一步 先在Xcode下载一个Xcode14.3.1的压缩包 第二步 本地解压Xcode,将外层目录名变更为Xcode_14.3.1,将文件拷贝到 /Applications目录下。 第三步 变更xcode-sel…

案例分析篇06:数据库设计相关28个考点(17~22)(2024年软考高级系统架构设计师冲刺知识点总结系列文章)

专栏系列文章推荐: 2024高级系统架构设计师备考资料(高频考点&真题&经验)https://blog.csdn.net/seeker1994/category_12593400.html 【历年案例分析真题考点汇总】与【专栏文章案例分析高频考点目录】(2024年软考高级系统架构设计师冲刺知识点总结-案例分析篇-…

中国金融统计年鉴、中国保险统计年鉴、中国人口与就业统计年鉴、国民经济和社会发展公报、中国劳动统计年鉴

数据下载链接:百度云下载链接 统计年鉴是指以统计图表和分析说明为主,通过高度密集的统计数据来全面、系统、连续地记录年度经济、社会等各方面发展情况的大型工具书来获取统计数据资料。 统计年鉴是进行各项经济、社会研究的必要前提。而借助于统计年…

案例分析篇01:软件架构设计考点架构风格及质量属性(2024年软考高级系统架构设计师冲刺知识点总结系列文章)

专栏系列文章推荐: 2024高级系统架构设计师备考资料(高频考点&真题&经验)https://blog.csdn.net/seeker1994/category_12593400.html 【历年案例分析真题考点汇总】与【专栏文章案例分析高频考点目录】(2024年软考高级系统架构设计师冲刺知识点总结-案例分析篇-…

JavaScript数组排序sort自定义函数不生效

背景 刷LeetCode时,遇到一道简单的数组排序题: 问题 想着直接用js的数组sort自定义排序即可,奈何测试用例运行总是不通过,返回的一直都是原数组。 代码排查 复制代码到Firefox浏览器控制台运行,结果输出的是正确结果&a…

【矩阵】240. 搜索二维矩阵 II【中等】

搜索二维矩阵 II 编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性:每行的元素从左到右升序排列。每列的元素从上到下升序排列。 示例 1: 输入:matrix [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22…

Python爬虫实战入门:豆瓣电影Top250(保你会,不会来打我)

文章目录 需求所需第三方库requests模块lxml模块了解 lxml模块和xpath语法xpath语法-基础节点选择语法 实战教程完整代码 需求 目标网站: https://movie.douban.com/top250 需求: 爬取电影中文名、英文名、电影详情页链接、导演、主演、上映年份、国籍、类型、评分、评分人数, …

StarRocks——滴滴的极速多维分析实践

背景 滴滴集团作为生活服务领域的头部企业,其中橙心优选经过一年多的数据体系建设,逐渐将一部分需要实时交互查询,即席查询的多维数据分析需求由ClickHouse迁移到了StarRocks中,接下来以StarRocks实现的漏斗分析为例介绍StarRocks…

扫雷小游戏制作教程:用HTML5和JavaScript打造经典游戏

🌟 前言 欢迎来到我的技术小宇宙!🌌 这里不仅是我记录技术点滴的后花园,也是我分享学习心得和项目经验的乐园。📚 无论你是技术小白还是资深大牛,这里总有一些内容能触动你的好奇心。🔍 &#x…

RocketMQ学习笔记四(黑马)

课程地址: 1.Rocket第二章内容介绍_哔哩哔哩_bilibili (视频35~88,搭建了一个电商项目) 待学,待完善。

以题为例浅谈SSRF

什么是ssrf SSRF(Server-Side Request Forgery:服务器端请求伪造) 是一种由攻击者构造形成由服务端发起请求的一个安全漏洞。 一般情况下,SSRF攻击的目标是从外网无法访问的内部系统。(正是因为它是由服务端发起的,所以它能够请求到与它相连…

Kafka-生产者报错javax.management.InstanceAlreadyExistsException

生产者发送消息到 kafka 中,然后控制台报错 然后根据日志查看 kafka 的源码发现了问题原因 说的是MBean已经注册了,然后报异常了,这样就会导致生产者的kafka注册失败, 原因是项目上生产者没有配置clientId,默认都是空导致的, 多个生产者(项目)注册到kafka集群中的 id 都相同。 …

C++——类和对象(2)

1. 类的6个默认成员函数 当一个类中什么都没有&#xff0c;编译器会帮类自动生成6个默认成员函数例如&#xff1a; class Date {}; 此篇文章主要围绕构造函数与析构函数进行讲解。 2. 构造函数 2.1 概念 #define _CRT_SECURE_NO_WARNINGS 1 #include <iostream> usi…

04- 基于SpringAMQP封装RabbitMQ,消息队列的Work模型和发布订阅模型

SpringAMQP 概述 使用RabbitMQ原生API在代码中设置连接MQ的参数比较繁琐,我们更希望把连接参数写在yml文件中来简化开发 SpringAMQP是基于AMQP协议定义的一套API规范,将RabbitMQ封装成一套模板用来发送和接收消息 AMQP(Advanced Message Queuing Portocol)是用于在应用程序…

R语言tidycmprsk包分析竞争风险模型

竞争风险模型就是指在临床事件中出现和它竞争的结局事件&#xff0c;这是事件会导致原有结局的改变&#xff0c;因此叫做竞争风险模型。比如我们想观察患者肿瘤的复发情况&#xff0c;但是患者在观察期突然车祸死亡&#xff0c;或者因其他疾病死亡&#xff0c;这样我们就观察不…

操作系统总结(第二周 第一堂)

前言&#xff1a; 第一周的重点就在于一张图表&#xff1a; 基于这张图&#xff0c;我们将陷入内核分为了两个大块Trap和Interrupt。同时我们知道一件事情任何一次I/O操作或者错误程序操作都将陷入内核&#xff0c;从而使得内核可以监控所有的外部设备以及维护整个电脑程序运行…

【python绘图】turle 绘图基本案例

文章目录 0. 基础知识1. 蟒蛇绘制2. 正方形绘制3. 六边形绘制4. 叠边形绘制5. 风轮绘制 0. 基础知识 资料来自中国mooc北京理工大学python课程 1. 蟒蛇绘制 import turtle turtle.setup(650, 350, 200, 200) turtle.penup() turtle.fd(-250) turtle.pendown() turtle.pen…