迁移学习怎么用

如果想实现一个计算机视觉应用,而不想从零开始训练权重,比方从随机初始化开始训练,更快的方式是下载已经训练好权重的网络结构,把这个作为预训练,迁移到你感兴趣的新任务上。ImageNet、PASCAL等等数据库已经公开在线。许多计算机视觉的研究者已经在上面训练了自己的算法,训练要耗费很长时间,很多GPU,有人已经经历过这种痛苦,可以下载这种开源的权重,为你自己的神经网络做好的初始化开端,而且可以用迁移学习来迁移知识,从这些大型公共数据库迁移知识到自己的问题上。

举例

比如有两只猫的名字是Tiggar和Misty,下载了框架,前面的可以都不用改,可以修改一下后面的softmax,根据自己的需要替换一下框架中的softmax即可。前面的参数不需要训练了,可以只训练softmax层的权重,同时冻结前面所有层

如果你的训练集比较小,用前面固定函数(该神经网络的前半部分)接受任一输入图像X,然后计算其特征向量,然后一句这个特征向量训练一个浅层softmax模型去预测,因此,预计算之前层的激活结果是有利于你计算的操作,(预计算)训练集所有样本(激活结果)并存到硬盘上,然后训练右边的softmax类别。这样做的好处是你不需要在训练集上每次迭代,重新计算这些激活结果。

如果你的训练集比较大,你可以冻结更少的层数,训练后面这些层,尽管输出层的类别与你需要的不同,你可以用最后几层权重作为初始化开始做梯度下降(训练),或者也可以去掉最后几层,用自己的神经元和最终的softmax输出(训练)。即你的数据越多,所冻结的层数可以越少,自己训练的层数可以越多

如果有很多数据,可以用开源网络和权重初始化整个网络然后训练可以用下载的权重初始化,因为这些权重可以代替随机初始化,然后做梯度下降,训练更新所有的权重和网络层

常见的迁移训练的方式:

1、载入权重后训练所有参数

2、载入权重后只训练最后几层参数

3、载入权重后在原网络基础上再添加一层全连接层,仅训练最后一个全连接层

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/277667.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

8:00面试,8:06就出来了,问的问题有点变态。。。

从小厂出来,没想到在另一家公司又寄了。 到这家公司开始上班,加班是每天必不可少的,看在钱给的比较多的份上,就不太计较了。没想到9月一纸通知,所有人不准加班,加班费不仅没有了,薪资还要降40%…

Springboot项目部署

1、Sping路径不需要有项目名,因为Springboot内置了tomcat,一个tomcat下面就部署了当前这一个项目,如果想要部署多个项目就要启动多个tomcat (1)一个项目多个端口 填写想要开的端口号 (2)部署多…

字符分类函数(iscntrl、i是space.....)---c语言

目录 一、定义二、字符分类函数2.1 -iscntrl()2.1.1定义2.1.2使用举例 2.2 -isspace()2.2.1描述2.2.2使用举例 2.3-isdigit()2.3.1描述2.3.2使用举例 2.4-isxdigit()2.4.1描述 2.5-islower()2.5.1描述2.5.2使用举例 2.6-isupper()…

Java基础夯实【进阶】——八股文【2024面试题案例代码】

1、Java当中什么是线程和进程 在Java中,线程和进程是两个非常重要的概念。进程可以被视为一个执行中的程序的实例,它拥有自己的内存空间和系统资源。而线程则是进程中的一个实体,由进程创建,并允许程序在同一时刻执行多个任务。J…

决策树 | 分类树回归树:算法逻辑

目录 一. 决策树(Decision Tree)1. 决策树的构建1.1 信息熵(Entropy)1.1.1 信息量&信息熵 定义1.1.2 高信息熵&低信息熵 定义1.1.3 信息熵 公式 1.2 信息增益(Information Gain)1.2.1 信息增益的计算1.2.2 小节 2. 小节2.1 算法分类2.2 决策树算法分割选择2.3 决策树算…

MechanicalSoup,一个非常实用的 Python 自动化浏览器交互工具库!

目录 前言 什么是 Python MechanicalSoup 库? 核心功能 使用方法 1. 安装 MechanicalSoup 库 2. 创建 MechanicalSoup 客户端 3. 打开网页并与之交互 实际应用场景 1. 网页自动化测试 2. 网络爬虫与数据提取 3. 网页自动化操作 4. 自动化填写和提交多个表单 5.…

柚见十三期(优化)

前端优化 加载匹配功能与加载骨架特效 骨架屏 : vant-skeleton index.vue中 /** * 加载数据 */ const loadData async () > { let userListData; loading.value true; //心动模式 if (isMatchMode.value){ const num 10;//推荐人数 userListData await myA…

django-comment-migrate 模型注释的使用

django-comment-migrate 的使用 django-comment-migrate 是一个 Django 应用,用于将模型注释自动迁移到数据库表注释中。它可以帮助您保持数据库表注释与模型定义的一致性,并提高代码的可读性。 安装 要使用 django-comment-migrate,您需要…

线程是如何在 6 种状态之间转换的

线程是如何在 6 种状态之间转换的 线程的 6 种状态New 新创建Runnable 可运行阻塞状态Blocked 被阻塞Waiting 等待Timed Waiting 限期等待 注意点 主要学习线程是如何在 6 种状态之间转换。 线程的 6 种状态 就像生物从出生到长大、最终死亡的过程一样,线程也有自己…

搭建Hadoop3.x完全分布式集群

零、资源准备 虚拟机相关: VMware workstation 16:虚拟机 > vmware_177981.zipCentOS Stream 9:虚拟机 > CentOS-Stream-9-latest-x86_64-dvd1.iso Hadoop相关 jdk1.8:JDK > jdk-8u261-linux-x64.tar.gzHadoop 3.3.6&am…

Netty架构详解

文章目录 概述整体结构Netty的核心组件逻辑架构BootStrap & ServerBootStrapChannelPipelineFuture、回调和 ChannelHandler选择器、事件和 EventLoopChannelHandler的各种ChannelInitializer类图 Protocol Support 协议支持层Transport Service 传输服务层Core 核心层模块…

第七节:Vben Admin权限-后端获取路由和菜单

系列文章目录 第一节:Vben Admin介绍和初次运行 第二节:Vben Admin 登录逻辑梳理和对接后端准备 第三节:Vben Admin登录对接后端login接口 第四节:Vben Admin登录对接后端getUserInfo接口 第五节:Vben Admin权限-前端控制方式 第六节:Vben Admin权限-后端控制方式 第七节…

Unity2019.2.x 导出apk 安装到安卓Android12+及以上的系统版本 安装出现-108 安装包似乎无效的解决办法

Unity2019.2.x 导出apk 安装到安卓Android12及以上的系统版本 安装出现-108 安装包似乎无效的解决办法 导出AndroidStudio工程后 需要设置 build.gradle文件 // GENERATED BY UNITY. REMOVE THIS COMMENT TO PREVENT OVERWRITING WHEN EXPORTING AGAINbuildscript {repositor…

河马优化算法(HO)-2024年Nature子刊新算法 公式原理详解与性能测评 Matlab代码免费获取

声明:文章是从本人公众号中复制而来,因此,想最新最快了解各类智能优化算法及其改进的朋友,可关注我的公众号:强盛机器学习,不定期会有很多免费代码分享~ 目录 原理简介 一、种群初始化 二、河马在河流或…

【Python编程基础】第一节.Python基本语法(上)

文章目录 前言⼀、Python介绍二、Python环境配置三、Pycharm 书写代码四、Python基本语法 4.1 print 函数的简单使用 4.2 注释 4.3 Python 代码中三种波浪线和 PEP8 4.4 在 cmd 终端中运⾏ Python 代码 4.5 变量 4.6 数据类型 4.7 类型转换…

Python使用openpyxl库或pandas库创建.xlsx格式的Excel文件,并向文件不同的sheet按行或按列写入内容

import openpyxl# 创建-一个Workbook对象 wb openpyxl.Workbook()# 创建多个工作表 sheet1 wb.active sheet1.title "s1"sheet2 wb.create_sheet("s2")# 在不同的工作表中写入数据 sheet1["A1"] Data for Sheet1 sheet1["A2"] D…

HCIP—BGP邻居关系建立实验

BGP的邻居称为:IBGP对等体 EBGP对等体 1.EBGP对等体关系: 位于 不同自治系统 的BGP路由器之间的BGP对等体关系 EBGP对等体一般使用 直连建立 对等体关系,EBGP邻居之间的报文 TTL中值设置为1 两台路由器之间建立EBGP对等体关系&#xff0…

SQLiteC/C++接口详细介绍之sqlite3类(十三)

返回目录:SQLite—免费开源数据库系列文章目录 上一篇:SQLiteC/C接口详细介绍之sqlite3类(十二) 下一篇:SQLiteC/C接口详细介绍之sqlite3类(十四)(未发表) 40.sqlite3…

【算法】一类支持向量机OC-SVM(1)

【算法】一类支持向量机OC-SVM 前言一类支持向量机OC-SVM 概念介绍示例编写数据集创建实现一类支持向量机OC-SVM完整的示例输出 前言 由于之前毕设期间主要的工具就是支持向量机,从基础的回归和分类到后来的优化,在接触到支持向量机还有一类支持向量机的…

Redis Desktop Manager:一站式Redis数据库管理与优化

Redis Desktop Manager是一款功能强大的Redis桌面管理工具,也被称作Redis可视化工具。以下是其主要的功能特色: 连接管理:Redis Desktop Manager支持连接多个Redis服务器,用户可以在同一界面下管理多个数据库,大大提高…