491 递增子序列(medium)
给你一个整数数组 nums ,找出并返回所有该数组中不同的递增子序列,递增子序列中 至少有两个元素 。你可以按 任意顺序 返回答案。
数组中可能含有重复元素,如出现两个整数相等,也可以视作递增序列的一种特殊情况。
思路:因为需要求递增子序列所以无法用used数组,可以用set去重(这个方法也可以用到子集去重和组合去重),更进一步因为本题数字有上下界,可以利用数组作哈希去重来提升效率
代码实现1(set去重):
class Solution {
private:vector<vector<int>> result;vector<int> path;void backtracking(vector<int>& nums, int startIndex) {if (path.size() > 1) {result.push_back(path);// 注意这里不要加return,要取树上的节点}unordered_set<int> uset; // 使用set对本层元素进行去重for (int i = startIndex; i < nums.size(); i++) {if ((!path.empty() && nums[i] < path.back())|| uset.find(nums[i]) != uset.end()) {continue;}uset.insert(nums[i]); // 记录这个元素在本层用过了,本层后面不能再用了path.push_back(nums[i]);backtracking(nums, i + 1);path.pop_back();}}
public:vector<vector<int>> findSubsequences(vector<int>& nums) {result.clear();path.clear();backtracking(nums, 0);return result;}
};
代码实现2(数组去重):
class Solution {
private:vector<vector<int>> result;vector<int> path;void backtracking(vector<int>& nums, int startIndex) {if (path.size() > 1) {result.push_back(path);}int used[201] = {0}; // 这里使用数组来进行去重操作,题目说数值范围[-100, 100]for (int i = startIndex; i < nums.size(); i++) {if ((!path.empty() && nums[i] < path.back())|| used[nums[i] + 100] == 1) {continue;}used[nums[i] + 100] = 1; // 记录这个元素在本层用过了,本层后面不能再用了path.push_back(nums[i]);backtracking(nums, i + 1);path.pop_back();}}
public:vector<vector<int>> findSubsequences(vector<int>& nums) {result.clear();path.clear();backtracking(nums, 0);return result;}
};
详细解析:
思路视频
代码实现文章
46 全排列(medium)
给定一个不含重复数字的数组 nums ,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。
思路:标准回溯法,注意两点:1.startIndex==0 2.用used数组标记使用过的元素
代码实现:
class Solution {
public:vector<vector<int>> result;vector<int> path;void backtracking (vector<int>& nums, vector<bool>& used) {// 此时说明找到了一组if (path.size() == nums.size()) {result.push_back(path);return;}for (int i = 0; i < nums.size(); i++) {if (used[i] == true) continue; // path里已经收录的元素,直接跳过used[i] = true;path.push_back(nums[i]);backtracking(nums, used);path.pop_back();used[i] = false;}}vector<vector<int>> permute(vector<int>& nums) {result.clear();path.clear();vector<bool> used(nums.size(), false);backtracking(nums, used);return result;}
};
详细解析:
思路视频
代码实现文章
47 全排列 II(medium)
给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列。
思路:used数组增加一项功能,树枝去重or树层去重
代码实现1(树层去重):
class Solution {
private:vector<vector<int>> result;vector<int> path;void backtracking (vector<int>& nums, vector<bool>& used) {// 此时说明找到了一组if (path.size() == nums.size()) {result.push_back(path);return;}for (int i = 0; i < nums.size(); i++) {// used[i - 1] == true,说明同一树枝nums[i - 1]使用过// used[i - 1] == false,说明同一树层nums[i - 1]使用过// 如果同一树层nums[i - 1]使用过则直接跳过if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {continue;}if (used[i] == false) {used[i] = true;path.push_back(nums[i]);backtracking(nums, used);path.pop_back();used[i] = false;}}}
public:vector<vector<int>> permuteUnique(vector<int>& nums) {result.clear();path.clear();sort(nums.begin(), nums.end()); // 排序vector<bool> used(nums.size(), false);backtracking(nums, used);return result;}
};// 时间复杂度: 最差情况所有元素都是唯一的。复杂度和全排列1都是 O(n! * n) 对于 n 个元素一共有 n! 中排列方案。而对于每一个答案,我们需要 O(n) 去复制最终放到 result 数组
// 空间复杂度: O(n) 回溯树的深度取决于我们有多少个元素
代码实现2(树枝去重):
class Solution {
private:vector<vector<int>> result;vector<int> path;void backtracking (vector<int>& nums, vector<bool>& used) {if (path.size() == nums.size()) {result.push_back(path);return;}for (int i = 0; i < nums.size(); i++) {if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == true) {continue;}if (used[i] == false) {used[i] = true;path.push_back(nums[i]);backtracking(nums, used);path.pop_back();used[i] = false;}}}
public:vector<vector<int>> permuteUnique(vector<int>& nums) {result.clear();path.clear();sort(nums.begin(), nums.end()); // 排序vector<bool> used(nums.size(), false);backtracking(nums, used);return result;}
};
详细解析:
思路视频
代码实现文章