目录
C++标准库智能指针的使用
auto_ptr的了解
unique_ptr的了解
应用
析构问题
解决办法
方案一:特化
方案二:删除器
智能指针原理
了解weak_ptr
内存泄漏
如何避免内存泄漏
模拟实现智能指针
C++标准库智能指针的使用
- C++标准库中的智能指针都在这个头⽂件下⾯,我们包含就可以是使⽤了, 智能指针有好⼏种,除了weak_ptr他们都符合RAII和像指针⼀样访问的⾏为,原理上⽽⾔主要是解 决智能指针拷⻉时的思路不同。
- auto_ptr是C++98时设计出来的智能指针,他的特点是拷⻉时把被拷⻉对象的资源的管理权转移给 拷⻉对象,这是⼀个⾮常糟糕的设计,因为他会到被拷⻉对象悬空,访问报错的问题,C++11设计 出新的智能指针后,强烈建议不要使⽤auto_ptr。其他C++11出来之前很多公司也是明令禁⽌使⽤ 这个智能指针的。
- unique_ptr是C++11设计出来的智能指针,他的名字翻译出来是唯⼀指针,他的特点的不⽀持拷 ⻉,只⽀持移动。如果不需要拷⻉的场景就⾮常建议使⽤他。
- shared_ptr是C++11设计出来的智能指针,他的名字翻译出来是共享指针,他的特点是⽀持拷⻉, 也⽀持移动。如果需要拷⻉的场景就需要使⽤他了。底层是⽤引⽤计数的⽅式实现的。
- weak_ptr是C++11设计出来的智能指针,他的名字翻译出来是弱指针,他完全不同于上⾯的智能指 针,他不⽀持RAII,也就意味着不能⽤它直接管理资源,weak_ptr的产⽣本质是要解决shared_ptr 的⼀个循环引⽤导致内存泄漏的问题。
- shared_ptr 除了⽀持⽤指向资源的指针构造,还⽀持直接构造。
- shared_ptr 和 unique_ptr 的构造函数都使⽤explicit修饰,防⽌普通指针隐式类型转换 成其他智能指针对象。
auto_ptr的了解
它是拷⻉时把被拷⻉对象的资源的管理权转移给 拷⻉对象。
所以不建议使用auto_ptr!
unique_ptr的了解
它不⽀持拷 ⻉,只⽀持移动。
shared_ptr的了解
他的特点是⽀持拷⻉, 也⽀持移动.
应用
析构问题
解决办法
方案一:特化
方案二:删除器
因为shared_ptr和unique_ptr的不同,我们分开讲解!
有如下函数:
shared_ptr:
unique_ptr:
由于unique_ptr和shared_ptr的设计不同,用法也不同!
unique_ptr不仅要传对象,还要传类型!
注意:
我们也可以这样写:利用make_shared
shared_ptr 和 unique_ptr 的构造函数都使⽤explicit修饰,防⽌普通指针隐式类型转换成其他智能指针对象。(所以禁止隐式类型转换)
智能指针原理
看看shared_ptr是如何设计的,尤其是引⽤计数的设计,主要这⾥⼀份资源就需要⼀个 引⽤计数,所以引⽤计数才⽤静态成员的⽅式是⽆法实现的,要使⽤堆上动态开辟的⽅式,构造智 能指针对象时来⼀份资源,就要new⼀个引⽤计数出来。多个shared_ptr指向资源时就++引⽤计 数,shared_ptr对象析构时就--引⽤计数,引⽤计数减到0时代表当前析构的shared_ptr是最后⼀ 个管理资源的对象,则析构资源。
shared_ptr循环引用问题
有这么一个类:
跑以下程序会有循环引用的问题:
分析:
析构:
此时,继续析构,但是陷入引用循环!
解释:
解决方法:
了解weak_ptr
weak_ptr也没有重载operator*和operator->等,因为他不参与资源管理,那么如果他绑定的 shared_ptr已经释放了资源,那么他去访问资源就是很危险的。weak_ptr⽀持expired检查指向的 资源是否过期,use_count也可获取shared_ptr的引⽤计数,weak_ptr想访问资源时,可以调⽤ lock返回⼀个管理资源的shared_ptr,如果资源已经被释放,返回的shared_ptr是⼀个空对象,如 果资源没有释放,则通过返回的shared_ptr访问资源是安全的。
shared_ptr的线程安全问题
- shared_ptr的引⽤计数对象在堆上,如果多个shared_ptr对象在多个线程中,进⾏shared_ptr的拷 ⻉析构时会访问修改引⽤计数,就会存在线程安全问题,所以shared_ptr引⽤计数是需要加锁或者 原⼦操作保证线程安全的。
- shared_ptr指向的对象也是有线程安全的问题的,但是这个对象的线程安全问题不归shared_ptr 管,它也管不了,应该有外层使⽤shared_ptr的⼈进⾏线程安全的控制。
- 引⽤计数从int*改成atomic*就可以保证 引⽤计数的线程安全问题,或者使⽤互斥锁加锁也可以。
内存泄漏
什么是内存泄漏:内存泄漏指因为疏忽或错误造成程序未能释放已经不再使⽤的内存,⼀般是忘记释 放或者发⽣异常释放程序未能执⾏导致的。内存泄漏并不是指内存在物理上的消失,⽽是应⽤程序分 配某段内存后,因为设计错误,失去了对该段内存的控制,因⽽造成了内存的浪费。
内存泄漏的危害:普通程序运⾏⼀会就结束了出现内存泄漏问题也不⼤,进程正常结束,⻚表的映射 关系解除,物理内存也可以释放。⻓期运⾏的程序出现内存泄漏,影响很⼤,如操作系统、后台服 务、⻓时间运⾏的客⼾端等等,不断出现内存泄漏会导致可⽤内存不断变少,各种功能响应越来越 慢,最终卡死。
如何避免内存泄漏
⼯程前期良好的设计规范,养成良好的编码规范,申请的内存空间记着匹配的去释放。ps:这个理 想状态。但是如果碰上异常时,就算注意释放了,还是可能会出问题。需要下⼀条智能指针来管理 才有保证。
尽量使⽤智能指针来管理资源,如果⾃⼰场景⽐较特殊,采⽤RAII思想⾃⼰造个轮⼦管理。
定期使⽤内存泄漏⼯具检测,尤其是每次项⽬快上线前,不过有些⼯具不够靠谱,或者是收费。
总结⼀下:内存泄漏⾮常常⻅,解决⽅案分为两种:1、事前预防型。如智能指针等。2、事后查错 型。如泄漏检测⼯具。
模拟实现智能指针
namespace bit
{template<class T>class shared_ptr{public:explicit shared_ptr(T* ptr = nullptr): _ptr(ptr), _pcount(new atomic<int>(1)){}template<class D>explicit shared_ptr(T* ptr, D del): _ptr(ptr), _pcount(new atomic<int>(1)), _del(del){}shared_ptr(const shared_ptr<T>& sp):_ptr(sp._ptr), _pcount(sp._pcount), _del(sp._del){++(*_pcount);}void release(){if (--(*_pcount) == 0){//delete _ptr;_del(_ptr);delete _pcount;_ptr = nullptr;_pcount = nullptr;}}// sp1 = sp4;shared_ptr<T>& operator=(const shared_ptr<T>& sp){if (this != &sp){release();_ptr = sp._ptr;_pcount = sp._pcount;_del = sp._del;++(*_pcount);}return *this;}~shared_ptr(){release();}T& operator*(){return *_ptr;}T* operator->(){return _ptr;}T* get() const{return _ptr;}int use_count() const{return *_pcount;}operator bool(){return _ptr != nullptr;}private:T* _ptr;//int* _pcount;atomic<int>* _pcount;std::function<void(T*)> _del = [](T* ptr) {delete ptr; };};template<class T>class weak_ptr{public:weak_ptr(){}weak_ptr(const shared_ptr<T>& sp):_ptr(sp.get()){}weak_ptr<T>& operator=(const shared_ptr<T>& sp){_ptr = sp.get();return *this;}private:T* _ptr = nullptr;//T* _pcount};
}
好了,C++之旅基本结束,我们linux再见!!!