MySql实战--深入浅出索引(上)

提到数据库索引,我想你并不陌生,在日常工作中会经常接触到。比如某一个SQL查询比较慢,分析完原因之后,你可能就会说“给某个字段加个索引吧”之类的解决方案。但到底什么是索引,索引又是如何工作的呢?今天就让我们一起来聊聊这个话题吧。

数据库索引的内容比较多,我分成了上下两篇文章。索引是数据库系统里面最重要的概念之一,所以我希望你能够耐心看完。在后面的实战文章中,我也会经常引用这两篇文章中提到的知识点,加深你对数据库索引的理解。

一句话简单来说,索引的出现其实就是为了提高数据查询的效率,就像书的目录一样。一本500页的书,如果你想快速找到其中的某一个知识点,在不借助目录的情况下,那我估计你可得找一会儿。同样,对于数据库的表而言,索引其实就是它的“目录”。

索引的常见模型

索引的出现是为了提高查询效率,但是实现索引的方式却有很多种,所以这里也就引入了索引模型的概念。可以用于提高读写效率的数据结构很多,这里我先给你介绍三种常见、也比较简单的数据结构,它们分别是哈希表、有序数组和搜索树。

下面我主要从使用的角度,为你简单分析一下这三种模型的区别。

哈希表是一种以键-值(key-value)存储数据的结构,我们只要输入待查找的键即key,就可以找到其对应的值即Value。哈希的思路很简单,把值放在数组里,用一个哈希函数把key换算成一个确定的位置,然后把value放在数组的这个位置。

不可避免地,多个key值经过哈希函数的换算,会出现同一个值的情况。处理这种情况的一种方法是,拉出一个链表。

假设,你现在维护着一个身份证信息和姓名的表,需要根据身份证号查找对应的名字,这时对应的哈希索引的示意图如下所示:

图1 哈希表示意图

图中,User2和User4根据身份证号算出来的值都是N,但没关系,后面还跟了一个链表。假设,这时候你要查ID_card_n2对应的名字是什么,处理步骤就是:首先,将ID_card_n2通过哈希函数算出N;然后,按顺序遍历,找到User2。

需要注意的是,图中四个ID_card_n的值并不是递增的,这样做的好处是增加新的User时速度会很快,只需要往后追加。但缺点是,因为不是有序的,所以哈希索引做区间查询的速度是很慢的。

你可以设想下,如果你现在要找身份证号在[ID_card_X, ID_card_Y]这个区间的所有用户,就必须全部扫描一遍了。

所以,哈希表这种结构适用于只有等值查询的场景,比如Memcached及其他一些NoSQL引擎。

而有序数组在等值查询和范围查询场景中的性能就都非常优秀。还是上面这个根据身份证号查名字的例子,如果我们使用有序数组来实现的话,示意图如下所示:

图2 有序数组示意图

这里我们假设身份证号没有重复,这个数组就是按照身份证号递增的顺序保存的。这时候如果你要查ID_card_n2对应的名字,用二分法就可以快速得到,这个时间复杂度是O(log(N))。

同时很显然,这个索引结构支持范围查询。你要查身份证号在[ID_card_X, ID_card_Y]区间的User,可以先用二分法找到ID_card_X(如果不存在ID_card_X,就找到大于ID_card_X的第一个User),然后向右遍历,直到查到第一个大于ID_card_Y的身份证号,退出循环。

如果仅仅看查询效率,有序数组就是最好的数据结构了。但是,在需要更新数据的时候就麻烦了,你往中间插入一个记录就必须得挪动后面所有的记录,成本太高。

所以,有序数组索引只适用于静态存储引擎,比如你要保存的是2017年某个城市的所有人口信息,这类不会再修改的数据。

二叉搜索树也是课本里的经典数据结构了。还是上面根据身份证号查名字的例子,如果我们用二叉搜索树来实现的话,示意图如下所示:

图3 二叉搜索树示意图

二叉搜索树的特点是:父节点左子树所有结点的值小于父节点的值,右子树所有结点的值大于父节点的值。这样如果你要查ID_card_n2的话,按照图中的搜索顺序就是按照UserA -> UserC -> UserF -> User2这个路径得到。这个时间复杂度是O(log(N))。

当然为了维持O(log(N))的查询复杂度,你就需要保持这棵树是平衡二叉树。为了做这个保证,更新的时间复杂度也是O(log(N))。

树可以有二叉,也可以有多叉。多叉树就是每个节点有多个儿子,儿子之间的大小保证从左到右递增。二叉树是搜索效率最高的,但是实际上大多数的数据库存储却并不使用二叉树。其原因是,索引不止存在内存中,还要写到磁盘上。

你可以想象一下一棵100万节点的平衡二叉树,树高20。一次查询可能需要访问20个数据块。在机械硬盘时代,从磁盘随机读一个数据块需要10 ms左右的寻址时间。也就是说,对于一个100万行的表,如果使用二叉树来存储,单独访问一个行可能需要20个10 ms的时间,这个查询可真够慢的。

为了让一个查询尽量少地读磁盘,就必须让查询过程访问尽量少的数据块。那么,我们就不应该使用二叉树,而是要使用“N叉”树。这里,“N叉”树中的“N”取决于数据块的大小。

以InnoDB的一个整数字段索引为例,这个N差不多是1200。这棵树高是4的时候,就可以存1200的3次方个值,这已经17亿了。考虑到树根的数据块总是在内存中的,一个10亿行的表上一个整数字段的索引,查找一个值最多只需要访问3次磁盘。其实,树的第二层也有很大概率在内存中,那么访问磁盘的平均次数就更少了。

N叉树由于在读写上的性能优点,以及适配磁盘的访问模式,已经被广泛应用在数据库引擎中了。

不管是哈希还是有序数组,或者N叉树,它们都是不断迭代、不断优化的产物或者解决方案。数据库技术发展到今天,跳表、LSM树等数据结构也被用于引擎设计中,这里我就不再一一展开了。

你心里要有个概念,数据库底层存储的核心就是基于这些数据模型的。每碰到一个新数据库,我们需要先关注它的数据模型,这样才能从理论上分析出这个数据库的适用场景。

截止到这里,我用了半篇文章的篇幅和你介绍了不同的数据结构,以及它们的适用场景,你可能会觉得有些枯燥。但是,我建议你还是要多花一些时间来理解这部分内容,毕竟这是数据库处理数据的核心概念之一,在分析问题的时候会经常用到。当你理解了索引的模型后,就会发现在分析问题的时候会有一个更清晰的视角,体会到引擎设计的精妙之处。

现在,我们一起进入相对偏实战的内容吧。

在MySQL中,索引是在存储引擎层实现的,所以并没有统一的索引标准,即不同存储引擎的索引的工作方式并不一样。而即使多个存储引擎支持同一种类型的索引,其底层的实现也可能不同。由于InnoDB存储引擎在MySQL数据库中使用最为广泛,所以下面我就以InnoDB为例,和你分析一下其中的索引模型。

InnoDB 的索引模型

在InnoDB中,表都是根据主键顺序以索引的形式存放的,这种存储方式的表称为索引组织表。又因为前面我们提到的,InnoDB使用了B+树索引模型,所以数据都是存储在B+树中的。

每一个索引在InnoDB里面对应一棵B+树。

假设,我们有一个主键列为ID的表,表中有字段k,并且在k上有索引。

这个表的建表语句是:

mysql> create table T(
id int primary key, 
k int not null, 
name varchar(16),
index (k))engine=InnoDB;

表中R1~R5的(ID,k)值分别为(100,1)、(200,2)、(300,3)、(500,5)和(600,6),两棵树的示例示意图如下。

图4 InnoDB的索引组织结构

从图中不难看出,根据叶子节点的内容,索引类型分为主键索引和非主键索引。

主键索引的叶子节点存的是整行数据。在InnoDB里,主键索引也被称为聚簇索引(clustered index)。

非主键索引的叶子节点内容是主键的值。在InnoDB里,非主键索引也被称为二级索引(secondary index)。

根据上面的索引结构说明,我们来讨论一个问题:基于主键索引和普通索引的查询有什么区别?

  • 如果语句是select * from T where ID=500,即主键查询方式,则只需要搜索ID这棵B+树;

  • 如果语句是select * from T where k=5,即普通索引查询方式,则需要先搜索k索引树,得到ID的值为500,再到ID索引树搜索一次。这个过程称为回表。

也就是说,基于非主键索引的查询需要多扫描一棵索引树。因此,我们在应用中应该尽量使用主键查询。

索引维护

B+树为了维护索引有序性,在插入新值的时候需要做必要的维护。以上面这个图为例,如果插入新的行ID值为700,则只需要在R5的记录后面插入一个新记录。如果新插入的ID值为400,就相对麻烦了,需要逻辑上挪动后面的数据,空出位置。

而更糟的情况是,如果R5所在的数据页已经满了,根据B+树的算法,这时候需要申请一个新的数据页,然后挪动部分数据过去。这个过程称为页分裂。在这种情况下,性能自然会受影响。

除了性能外,页分裂操作还影响数据页的利用率。原本放在一个页的数据,现在分到两个页中,整体空间利用率降低大约50%。

当然有分裂就有合并。当相邻两个页由于删除了数据,利用率很低之后,会将数据页做合并。合并的过程,可以认为是分裂过程的逆过程。

基于上面的索引维护过程说明,我们来讨论一个案例:

你可能在一些建表规范里面见到过类似的描述,要求建表语句里一定要有自增主键。当然事无绝对,我们来分析一下哪些场景下应该使用自增主键,而哪些场景下不应该。

自增主键是指自增列上定义的主键,在建表语句中一般是这么定义的: NOT NULL PRIMARY KEY AUTO_INCREMENT。

插入新记录的时候可以不指定ID的值,系统会获取当前ID最大值加1作为下一条记录的ID值。

也就是说,自增主键的插入数据模式,正符合了我们前面提到的递增插入的场景。每次插入一条新记录,都是追加操作,都不涉及到挪动其他记录,也不会触发叶子节点的分裂。

而有业务逻辑的字段做主键,则往往不容易保证有序插入,这样写数据成本相对较高。

除了考虑性能外,我们还可以从存储空间的角度来看。假设你的表中确实有一个唯一字段,比如字符串类型的身份证号,那应该用身份证号做主键,还是用自增字段做主键呢?

由于每个非主键索引的叶子节点上都是主键的值。如果用身份证号做主键,那么每个二级索引的叶子节点占用约20个字节,而如果用整型做主键,则只要4个字节,如果是长整型(bigint)则是8个字节。

显然,主键长度越小,普通索引的叶子节点就越小,普通索引占用的空间也就越小。

所以,从性能和存储空间方面考量,自增主键往往是更合理的选择。

有没有什么场景适合用业务字段直接做主键的呢?还是有的。比如,有些业务的场景需求是这样的:

  1. 只有一个索引;

  1. 该索引必须是唯一索引。

你一定看出来了,这就是典型的KV场景。

由于没有其他索引,所以也就不用考虑其他索引的叶子节点大小的问题。

这时候我们就要优先考虑上一段提到的“尽量使用主键查询”原则,直接将这个索引设置为主键,可以避免每次查询需要搜索两棵树。

小结

今天,我跟你分析了数据库引擎可用的数据结构,介绍了InnoDB采用的B+树结构,以及为什么InnoDB要这么选择。B+树能够很好地配合磁盘的读写特性,减少单次查询的磁盘访问次数。

由于InnoDB是索引组织表,一般情况下我会建议你创建一个自增主键,这样非主键索引占用的空间最小。但事无绝对,我也跟你讨论了使用业务逻辑字段做主键的应用场景。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/281040.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

oracle设置主键自增步骤

设置主键自增步骤: 每一张表都要设置序列,然后设置触发器。比mysql繁琐。 一、设置序列 选中表后,—》 文件—》新建—》其他—》序列. 设置如下四个值即可。 crtls保存。 给序列起个名字,一定要全大写字母。 二、设置触发器…

如何设置IDEA远程连接服务器开发环境并结合cpolar实现ssh远程开发

文章目录 1. 检查Linux SSH服务2. 本地连接测试3. Linux 安装Cpolar4. 创建远程连接公网地址5. 公网远程连接测试6. 固定连接公网地址7. 固定地址连接测试 本文主要介绍如何在IDEA中设置远程连接服务器开发环境,并结合Cpolar内网穿透工具实现无公网远程连接&#xf…

Pudgy Penguins交易量一路攀升 多次创下历史新高

日前,一个名为胖企鹅(Pudgy Penguins) NFT 项目交易量持续攀升,一度在3月9日成为NFT市场的“销冠”。事实上,从2023年下半年开始,Pudgy Penguins的地板价就在不断上升,进入2024年更是多次创下历…

算法打卡day11

今日任务: 1)239. 滑动窗口最大值 2)347.前 K 个高频元素 239. 滑动窗口最大值 题目链接:239. 滑动窗口最大值 - 力扣(LeetCode) 给定一个数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移…

TouchGFX之性能测量

TouchGFX Core开放了几个信号,可用于测量性能。 当这些信号在内部触发时,用户可在应用程序中同步触发单个GPIO,从而实现“渲染时间”和其他有用信号的可视化。 信号在GPIO.hpp中定义 /* 用于操作GPIO的接口类,以便在目标硬件上进…

发布 AUR 软件包 (ArchLinux)

首发日期 2024-03-09, 以下为原文内容: 理论上来说, 我们应该平等的对待每一个 GNU/Linux 发行版本. 但是, 因为窝日常使用 ArchLinux, 所以对 ArchLinux 有一些特别的优待, 比如自己做的软件优先为 ArchLinux 打包发布. 本文以软件包 librush-bin 为例, 介绍发布 AUR 软件包的…

构建一个前端智能停车可视化系统

引言 随着城市化进程的加速,停车难问题日益突出。智能停车可视化系统通过实时展示停车场的车位信息,帮助用户快速找到空闲车位,提高停车效率。 目录 引言 一、系统设计 二、代码实现 1. 环境准备 2. 安装依赖 3. 创建停车场组件 4. 集…

【蓝桥杯入门记录】继电器、蜂鸣器及原理图分析

一、继电器、继电器概述 (1)蜂鸣器原理 蜂鸣器的发声原理由振动装置和谐振装置组成,而蜂鸣器又分为无源他激型与有源自激型,蜂鸣器的发声原理为: 1、无源他激型蜂鸣器的工作发声原理是:方波信号输入谐振装置转换为声…

Docker容器化技术(docker-compose示例:部署discuz论坛和wordpress博客,使用adminer管理数据库)

安装docker-compose [rootservice ~]# systemctl stop firewalld [rootservice ~]# setenforce 0 [rootservice ~]# systemctl start docker[rootservice ~]# wget https://github.com/docker/compose/releases/download/v2.5.0/docker-compose-linux-x86_64创建目录 [rootse…

HarmonyOS NEXT应用开发之跨文件样式复用和组件复用

介绍 本示例主要介绍了跨文件样式复用和组件复用的场景。在应用开发中,我们通常需要使用相同功能和样式的ArkUI组件,例如购物页面中会使用相同样式的Button按钮、Text显示文字,我们常用的方法是抽取公共样式或者封装成一个自定义组件到公共组…

JavaEE 初阶篇-深入了解操作系统中的进程与 PCB

🔥博客主页: 【小扳_-CSDN博客】 ❤感谢大家点赞👍收藏⭐评论✍ 文章目录 1.0 关于计算机是如何进行工作的 “常识” 1.1 关于寄存器、缓存与内存是如何配合 CPU “工作” 2.0 操作系统概述 2.1 操作系统内核 2.2 进程 2.3 PCB 2.3.1 PCB 属性…

QT增加线程函数步骤流程

在使用线程的时候,不仅要关注线程开启的时机,同时还要关注线程安全退出,这样才能保证程序的健壮性,如果线程开启的较多,且开启关闭比较频繁,建议使用线程池来处理。开启线程有三种方式:第一种C的…

【vue baidu-map】实现百度地图展示基地,鼠标悬浮标注点展示详细信息

实现效果如下&#xff1a; 自用代码记录 <template><div class"map" style"position: relative;"><baidu-mapid"bjmap":scroll-wheel-zoom"true":auto-resize"true"ready"handler"><bm-mar…

怎么轻松制作证件照?推荐这三款制作工具!

在日常生活中&#xff0c;我们经常需要制作各种证件照&#xff0c;如身份证、护照、驾驶证等。为了帮助大家快速、便捷地制作证件照&#xff0c;我将在本文中推荐三款优秀的证件照制作工具&#xff0c;包括国内外的软件&#xff0c;满足不同用户的需求。1.水印云 水印云是一款国…

MQ组件之RabbitMQ学习

MQ组件之RabbitMQ入门 同步调用和异步调用 在微服务架构中&#xff0c;服务之间的调用有同步调用和异步调用两种方式。 我们使用OpenFeign去调用是同步调用&#xff0c;同步调用的缺点很明显&#xff0c;在下图的场景中&#xff0c;支付完成后需要调用订单服务、仓库服务、短…

SpringBoot集成WebService

1&#xff09;添加依赖 <dependency><groupId>org.apache.cxf</groupId><artifactId>cxf-spring-boot-starter-jaxws</artifactId><version>3.3.4</version><exclusions><exclusion><groupId>javax.validation<…

九.pandas绘图基础

目录 九.pandas绘图基础 1-柱状图 --参数stackedTrue堆积 --参数figsize(宽,高) --自定义横坐标 --设置字体&显示负号 2.箱型图 3. 折线图 九.pandas绘图基础 Pandas的DataFrame和Series&#xff0c;在matplotlib基础上封装了一个简易的绘图函数, 使得我们在数据处…

17.WEB渗透测试--Kali Linux(五)

免责声明&#xff1a;内容仅供学习参考&#xff0c;请合法利用知识&#xff0c;禁止进行违法犯罪活动&#xff01; 内容参考于&#xff1a; 易锦网校会员专享课 上一个内容&#xff1a;16.WEB渗透测试--Kali Linux&#xff08;四&#xff09;-CSDN博客 1.ettercap简介与使用…

丘一丘正则表达式

正则表达式(regular expression,regex,RE) 正则表达式是一种用来简洁表达一组字符串的表达式正则表达式是一种通用的字符串表达框架正则表达式是一种针对字符串表达“简洁”和“特征”思想的工具正则表达式可以用来判断某字符串的特征归属 正则表达式常用操作符 操作符说明实…

倪诗韵古琴雷期展示,琴体秀气

音色通透、细腻&#xff0c;灵敏度高&#xff0c;好不好自己听吧&#xff0c;绝对是入门演奏利器。想不想听试音&#xff1f;试音已经发出来了&#xff0c;但是这床琴已经订出去了&#xff0c;不过琴友可以听听雷期的音色&#xff0c;那就关注我吧