进程的概念 | PCB | Linux下的task_struct | 父子进程和子进程

 在讲进程之前首先就是需要去回顾一下我们之前学的操作系统是干嘛的,首先操作系统是一个软件,它是对上提供一个良好高效,稳定的环境的,这是相对于用户来说的,对下是为了进行更好的软硬件管理的,所以操作系统是一个进行软硬件管理的软件。

实际上我们的硬盘,键盘和显示器这些是我们的硬件,但是操作系统是不能直接对我们的硬件进行控制,所以操作系统和我们的硬件中还有一层就是我们的驱动程序,那还有就是我们的用户是不能直接对我们的操作系统进行访问的,都会通过系统调用的方式来对我们的操作系统进行访问,这些都是我们来学习今天文章内容的前言部分,那下面开始我们对进程内容的了解。

进程的概念

进程简单点来了解我们可以就认为它就是一个可执行的程序,也就是磁盘里的文件,然后进行运行起来,那我们在学C语言的时候都知道我们的可执行文件先是在磁盘里的,我们运行的时候,是要把磁盘文件加载到内存当中的,然后我们的内存里存的是这个可执行文件的数据,也就是代码加上数据。

但是被加载到内存当中的程序对进程的描述是不完整的,下面我来画张图,也就能方便大家来了解进程了。

先描述再组织

操作系统中里面可能一下子加载了很多的进程,就像我们的任务管理器是一样的,当我们打开任务管理器的时候我们就不难发现可以存在很多个进程,所以操作系统里面如果有大量的进程也是很正常的。所以讲一个程序加载到内存的时候,不仅仅是要把代码和数据加载到内存当中,同时也会产生一个结构体我们叫他为PCB(process control block),好像是叫这个。反正它是一个结构体,里面存放的是这个进程的属性加上下一个PCB结构体的指针,还有就是一个内存指针,指向的就是我们的内存里的代码和数据。

看下面的这个图

所以操作系统对进程的管理最后就是对链表的增删查改

最后就是我们讲了这么多,进程其实就是  

进程 == PCB结构体 + 代码和数据

这里也就是符合我们讲的先描述(结构体) 再组织(链表)

这里再给大家加个餐,我们之前说操作系统其实就是一款对软硬件进行管理的软件,我们也可以认为操作系统再我们电脑开机的时候也是存放在我们的磁盘当中的,我们认为它就是一个二进制的文件。

所以开机的时候我们发现我们的电脑不是马上开机的,而是等待一会然后进行开机的,那么这几秒的时间就是把操作系统的这个软件的数据拷贝到内存当中去的,然后我们的操作系统就会根据我们的进程来进行malloc出PCB的结构体,有几个进程就malloc几个PCB出来,最后再进行链接。

所以操作系统对进程的管理不是对我们的可执行程序进行管理,而是对我们的结构体PCB进行管理的

  

系统的接口

操作系统如果是想给我们提供服务的话,我们用户是不能直接对我们的操作系统进行访问的,原因呢就是如果我们改动我们操作系统中的数据和一些数据结构的化,我们的操作系统就不能给我们用户提供很好的服务,就比如操作系统其实就是我们的银行,如果我们要去存钱或者取钱的时候,难道银行是直接把小金库暴露给我们吗,我们是直接用银行电脑给我们的余额加上5个0的吗,那这样不就乱套了吗,所以我们如果想要访问我们的操作系统的时候,我们就需要利用好我们的系统调用接口或者标准库来对我们的操作系统进行访问,如果我们直接对操作系统进行访问的化就和我们直接去抢银行是没有区别的。

 

简单点我们就可以这样认为这个是操作系统的内核

总结:我们操作系统要运行我们的进程的时候,这个排队的过程就是让我们的PCB结构体进行排队,而不是内存中的代码和数据进行排队。

 理解一个概念:什么是动态运行?

我么可以理解为PCB在不同的队列中,进程就可以访问不同的空间。

进程的查看

引入话题

在我们考上大学的时候,我们的大学(监狱,不想上学)都会给新生一个编号

 也就是我们的学号,我们每个人都是有一个不一样的学号,那么进程也是这个样子的,所以我们需要了解的就是进程的标识符我们可以称作为pid。

pid : 在每一个进程中,都会存在唯一的标识符也就是我pid

我们可用用指令来查看进程的pid

这是一个Makefile里面写的代码,还有一个就是我们.c文件里写的代码,我们在我们的右边重新开一个,方便我们进行观察,这样我们的代码就跑起来,这个时候就是一个进程在跑,我们在左边可以执行指令来进行查看。

 ps ajx | head -1  && ps ajx | grep myprocess | grep -v grep
 

 grep -v grep 是不查看该条指令的进程,因为我们的指令其实就是一个可执行的文件,也是一个进程,所以执行这个就可以屏蔽该进程。

我们都知道,我们的代码在进行预处理,编译,汇编,还有链接之后就会形成可执行文件,我们可以用指令开查看我们的文件是不是可执行文件。

file之和发现它是一个可执行的文件。

通过proc目录来查看进程信息

在 / 下的路径下有一个proc,我们也可以在这个里面来查看进程。

我们上面引进的pid就可以用上了,pid是我们进程的唯一标识符,认识函数getpid,通过man手册进行查询

 这是获取pid的函数,我们上面的指令也可以查看pid

 ps ajx | head -1  && ps ajx | grep myprocess | grep -v grep

当我们进程在跑的时候,上面的这个pid也就是我们进程的标识符,我们也可以在代码里获取pid,来改写一下代码。

 这里大家可能是会有疑问的,因为我上面的进程pid已经进行改变了,这是为什么呢???

因为我们每次执行我们的代码的时候,它就是创建出一个进程,所以pid当然是不一样的。

我们这个时候也就可以在proc的目录下查看一些到底是不是存在这个进程呢。

proc下也是真的有这个目录的(哇,真的是你啊(好大声)) 。

我们也可以查看一些他们的属性,加上 -al就可以来看看细节了。

我们只需要关注图中画红的部分就可以了。exe其实就是可执行文件,因为这些文件都是该进程下的,我们知道我们的进程 == 代码和数据 + 内核的数据结构,每个进程都有相对于的task_struct

也就是我们之前讲的PCB,PCB里是有它的属性的,这个是我们知道,所以exe相当于告知该进程对应的磁盘上哪个是可执行文件,也就是对应的磁盘文件。

那cwd就是当前的工作路径,这个和我们的pwd是同一个路径。

做个小实验

现在我们就来改改我们的代码,我们在C语言的时候是讲过fopen函数的时候,如果我们是以写的方式打开的化,没有这个文件的时候也是会创建出新的文件出来的,而且是在当前工作路径下创建的,我们可以来看看代码应该怎么进行修改呢,

 

我们的代码进行这样子修改后发现在当前的路径下也是创建出来新的文件了,所以cwd就是指的当前的工作的路径。

获取父进程的pid

前面也是讲过我们是如何获得进程的pid,但是我们也有办法来获得它的父进程的pid在执行下面的进程的时候,我们看到的ppid就父进程的pid

 ps ajx | head -1  && ps ajx | grep myprocess | grep -v grep

那也是有办法来查看我们的ppid,就是函数getppid,用man手册进行查询来看看。

这个就是我们来查询ppid的函数,直接来尝试怎么使用。

我们就可以查询到我们的父进程的pid,而且发现父进程每次重新启动的时候都是不变的,。 

发现每次的子进程的pid是改变了,但是父进程的pid是没有进行改变的

这是为什么呢,我们来尝试看看它的父进程是怎么个事。

竟然就是我们的bash进程,那我们是不是可以猜测很多父进程的父进程他们都是-bash

答案是的 ,他们都是-bash的子进程

使用fork()函数创建子进程

fork函数就是专门创建子进程而生的!!!!!

我们可以用man手册进行查询。

FORK(2)                         Linux Programmer's Manual                        FORK(2)NAMEfork - create a child processSYNOPSIS#include <unistd.h>pid_t fork(void);DESCRIPTIONfork()  creates  a  new  process  by  duplicating  the  calling process.  The newprocess, referred to as the child, is an exact duplicate of the calling  process,referred to as the parent, except for the following points:*  The child has its own unique process ID, and this PID does not match the ID ofany existing process group (setpgid(2)).*  The child's parent process ID is the same as the parent's process ID.*  The child does not inherit its parent's memory locks (mlock(2), mlockall(2)).*  Process resource utilizations (getrusage(2)) and CPU time counters  (times(2))are reset to zero in the child.*  The child's set of pending signals is initially empty (sigpending(2)).*  The child does not inherit semaphore adjustments from its parent (semop(2)).*  The child does not inherit record locks from its parent (fcntl(2)).*  The  child  does  not  inherit timers from its parent (setitimer(2), alarm(2),timer_create(2)).*  The child does not inherit outstanding asynchronous I/O  operations  from  itsparent  (aio_read(3),  aio_write(3)), nor does it inherit any asynchronous I/Ocontexts from its parent (see io_setup(2)).The process attributes in the preceding list are all specified  in  POSIX.1-2001.The  parent  and  child  also differ with respect to the following Linux-specificManual page fork(2) line 1 (press h for help or q to quit)

凑个子树哈哈哈哈哈哈。

我们可以看到引入的头文件就是unistd这个头文件。

我们可以往下看,发现fork的返回值是有两个返回值的,这个意味着我们有两个返回值(好像什么都没说),我们可以在在代码里看看它是怎么返回两个值的,首先就是他们fork后面创建出子进程之和他们的代码是共享的(包括return0)

我们先写一个代码来看看到底是怎么实现的,

 #include <stdio.h>2 #include <sys/types.h>3 #include <unistd.h>4 //int main()5 //{6 //  while(1)7 //  {8 //    printf("I am process : pid %d  ppid %d\n",getpid(),getppid());9 //    sleep(1);10 //  }11 //}12 //13 //14 int main()15 {16   fork();17   printf("hello students\n");                                                          18 }
~

我们来看看效果是怎么样的呢。

我去,竟然是打印了两次,那就更能确定一点的就是我们这里是存在连个进程的,不信我们可以使用查看进程的指令来看看,但是因为这个代码是一下子就结束了,那么我们的进程也被kill,所以我们是无法查看的,那在写一个其他的代码。

 

代码

int main()21 {22   printf("I am process\n");23   sleep(3);24   pid_t p = fork();25   if(p ==0)26   {27     //child28     while(1)29     {30       printf("I am child process pid %d  ppid %d\n",getpid(),getppid());31       sleep(1);                                                                        32     }33   }34   else35   {36 37     while(1)38     {39       printf("I am parent process pid %d  ppid %d\n",getpid(),getppid());40       sleep(1);41     }42 43   }44 45   46 }

我们看效果和代码发现为什么它能有两个返回值,又能进行if的语句,也能执行fork的语句,如果单单是从语言角度去看的化就不是这个样子的,所以我们应该是来看fork函数,fork函数就是创建子进程的,我们可以理解为fork之后的代码是共享的,因为我们每个函数包括是main函数也是有返回值的,所i有有两个返回值,那返回值为0的时候就是child,如果返回值是>0的时候就是paernt的进程,这样的化就会产生两个进程。所以会产生的进程就是两个。

那么我们还有个问题就是fork函数之后,我们的操作系统是做了什么呢。

我们知道进程的组成就是task_struct +进程的代码和数据

我们可以认为子进程是继承了父进程的代码和数据的,但是还是要强调的是我们代码是继承的,但是数据得独立,这样也就能造成为什么我们的返回值是两个的原因。代码共享就会导致一定有两个返回值。

今天的分享就到这里了。我们下次再见。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/281168.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MySQL之索引与事务

一 索引的概念 一种帮助系统查找信息的数据 数据库索引 是一个排序的列表&#xff0c;存储着索引值和这个值所对应的物理地址无须对整个表进行扫描&#xff0c;通过物理地 址就可以找到所需数据是表中一列或者若干列值排序的方法 需要额外的磁盘空间 索引的作用 1 数据库…

浅谈RPC的理解

浅谈RPC的理解 前言RPC体系Dubbo架构最后 前言 本文中部分知识涉及Dubbo&#xff0c;需要对Dubbo有一定的理解&#xff0c;且对源码有一定了解 如果不了解&#xff0c;可以参考学习我之前的文章&#xff1a; 浅谈Spring整合Dubbo源码&#xff08;Service和Reference注解部分&am…

数字化战略失配企业现状,可惜了!

尽管大部分的企业领导者已经意识到数字化转型对于企业革新业务模式、提升运营效率、抢占市场先机的关键作用&#xff0c;但是&#xff0c;认知上的转变并不等同于成功的实践。在实际操作中&#xff0c;往往出现战略与企业现状不符的现象&#xff0c;这无疑会使得所有的努力付诸…

windows查看局域网内所有已使用的IP IP扫描工具 扫描网段下所有的IP Windows环境下

推荐使用&#xff1a; Advanced IP Scanner 官网下载&#xff1a; https://www.advanced-ip-scanner.com/

学习vue3第九节(新加指令 v-pre/v-once/v-memo/v-cloak )

1、v-pre 作用&#xff1a;防止编译器解析某个特定的元素及其内容&#xff0c;即v-pre 会跳过当前元素以及其子元素的vue语法解析&#xff0c;并将其保持原样输出&#xff1b; 用于&#xff1a;vue 中一些没有指令和插值表达式的节点的元素&#xff0c;使用 v-pre 可以提高 Vu…

LeetCode 17 / 100

目录 普通数组最大子数组和合并区间轮转数组除自身以外数组的乘积缺失的第一个正数 LeetCode 53. 最大子数组和 LeetCode 56. 合并区间 LeetCode 189. 轮转数组 LeetCode 238. 除自身以外数组的乘积 LeetCode 41. 缺失的第一个正数 普通数组 最大子数组和 给你一个整数数组 …

十、MySQL主从架构配置

目录 一、资源配置 二、主从同步基本原理&#xff1a; 1、具体步骤&#xff1a; 2、数据库是靠什么同步的&#xff1f; 3、pos与GTID的区别&#xff1f; 三、配置一主两从 &#xff08;1&#xff09;为主库和从库创建复制账户&#xff0c; 分别在主从库上执行如下命令&a…

React Native:跨平台移动应用开发的利器

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

Python进程与线程开发

目录 multiprocessing模块 线程的开发 threading模块 setDaemon 死锁 线程间的通信 multiprocessing模块 运行python的时候&#xff0c;我们都是在创建并运行一个进程&#xff0c;(linux中一个进程可以fork一个子进程&#xff0c;并让这个子进程exec另外一个程序)。在pyt…

机器学习——压缩网络作业

文章目录 任务描述介绍知识蒸馏网络设计 Baseline实践 任务描述 网络压缩&#xff1a;使用小模型模拟大模型的预测/准确性。在这个任务中&#xff0c;需要训练一个非常小的模型来完成HW3&#xff0c;即在food-11数据集上进行分类。 介绍 有许多种网络/模型压缩的类型&#xff0…

Java并发

目录 线程 什么是线程 进程和线程的区别 线程的生命周期 什么是多线程 并发与并行 多线程的三种实现方式 继承Thread类 1.创建类继承Thread类 2.重写run&#xff08;&#xff09;方法 3.创建对象启动线程 实现Runnable接口 1.自己定义一个类实现Runnable接口 2.重…

由浅到深认识C语言(14):枚举

该文章Github地址&#xff1a;https://github.com/AntonyCheng/c-notes 在此介绍一下作者开源的SpringBoot项目初始化模板&#xff08;Github仓库地址&#xff1a;https://github.com/AntonyCheng/spring-boot-init-template & CSDN文章地址&#xff1a;https://blog.csdn…

python毕业设计基于flask应急救援调度系统django

此系统设计主要采用的是python语言来进行开发&#xff0c;采用flask框架技术&#xff0c;框架分为三层&#xff0c;分别是控制层Controller&#xff0c;业务处理层Service&#xff0c;持久层dao&#xff0c;能够采用多层次管理开发&#xff0c;对于各个模块设计制作有一定的安全…

动态规划题目练习

基础知识&#xff1a; 动态规划背包问题-CSDN博客 动态规划基础概念-CSDN博客 题目练习&#xff1a; 题目1&#xff1a;过河卒 题目描述 棋盘上 A 点有一个过河卒&#xff0c;需要走到目标 B 点。卒行走的规则&#xff1a;可以向下、或者向右。同时在棋盘上 C 点有一个对方的马…

WebGIS管线在线编辑器(电力、水力、燃气、热力、热能管线)

随着GIS等信息技术的发展&#xff0c;地下管线管理也从二维平面向三维立体管理迈进。传统管线信息管理系统将管线及其附属设施抽象成二维平面内的点、要素&#xff0c;并使用各类点符号、不同颜色线段进行表达。虽能一定程度上满足城市智慧运行的需要&#xff0c;但不能很直观的…

【Linux】文件描述符 - fd

文章目录 1. open 接口介绍1.1 代码演示1.2 open 函数返回值 2. 文件描述符 fd2.1 0 / 1 / 22.2 文件描述符的分配规则 3. 重定向3.1 dup2 系统调用函数 4. FILE 与 缓冲区 1. open 接口介绍 使用 man open 指令查看手册&#xff1a; #include <sys/types.h> #include …

02. Java 中的关键字、标识符、运算符、分隔符和注释

关键字 Java 的关键字(keyword、保留字)是 Java 语言中具有特殊含义的单词&#xff0c;它们被保留供 Java 自身使用&#xff0c;不能被用作标识符。例如 public、class、void、int 等都是关键字。 关键字在 Java 语法中起着重要的作用&#xff0c;它们定义了编程的结构、控制…

Python 深度学习第二版(GPT 重译)(一)

前言 序言 如果你拿起这本书&#xff0c;你可能已经意识到深度学习在最近对人工智能领域所代表的非凡进步。我们从几乎无法使用的计算机视觉和自然语言处理发展到了在你每天使用的产品中大规模部署的高性能系统。这一突然进步的后果几乎影响到了每一个行业。我们已经将深度学…

【数据结构与算法】(13):冒泡排序和快速排序

&#x1f921;博客主页&#xff1a;Code_文晓 &#x1f970;本文专栏&#xff1a;数据结构与算法 &#x1f63b;欢迎关注&#xff1a;感谢大家的点赞评论关注&#xff0c;祝您学有所成&#xff01; ✨✨&#x1f49c;&#x1f49b;想要学习更多数据结构与算法点击专栏链接查看&…

揭秘2024云渲染平台优惠陷阱!有些看似划算实则很坑

近年来&#xff0c;随着云渲染技术的飞速发展&#xff0c;越来越多的人开始关注并使用云渲染平台。然而其中隐藏着一些消费陷阱&#xff0c;需要我们谨慎小心。有时候一些平台看似优惠&#xff0c;实际上可能是一个深不见底的坑。 今天小编就来对比分析2024年市面上主流的五款云…