刷题DAY30 | LeetCode 332-重新安排行程 51-N皇后 37-解数独

332 重新安排行程(hard)

给你一份航线列表 tickets ,其中 tickets[i] = [fromi, toi] 表示飞机出发和降落的机场地点。请你对该行程进行重新规划排序。

所有这些机票都属于一个从 JFK(肯尼迪国际机场)出发的先生,所以该行程必须从 JFK 开始。如果存在多种有效的行程,请你按字典排序返回最小的行程组合。

例如,行程 [“JFK”, “LGA”] 与 [“JFK”, “LGB”] 相比就更小,排序更靠前。
假定所有机票至少存在一种合理的行程。且所有的机票 必须都用一次 且 只能用一次。

思路:

这道题目有几个难点:

  • 一个行程中,如果航班处理不好容易变成一个圈,成为死循环
  • 有多种解法,字母序靠前排在前面,让很多同学望而退步,如何该记录映射关系呢 ?
  • 使用回溯法(也可以说深搜) 的话,那么终止条件是什么呢?
  • 搜索的过程中,如何遍历一个机场所对应的所有机场。

1. 如何理解死循环
对于死循环,我来举一个有重复机场的例子:
在这里插入图片描述
为什么要举这个例子呢,就是告诉大家,出发机场和到达机场也会重复的,如果在解题的过程中没有对集合元素处理好,就会死循环。

2. 记录映射关系

有多种解法,字母序靠前排在前面,让很多同学望而退步,如何该记录映射关系呢 ?

一个机场映射多个机场,机场之间要靠字母序排列,一个机场映射多个机场,可以使用std::unordered_map,如果让多个机场之间再有顺序的话,就是用std::map或者std::multimap或者 std::multiset。

这样存放映射关系可以定义为 unordered_map<string, multiset> targets 或者 unordered_map<string, map<string, int>> targets。

含义如下:

unordered_map<string, multiset> targets:unordered_map<出发机场, 到达机场的集合> targetsunordered_map<string, map<string, int>> targets:unordered_map<出发机场, map<到达机场, 航班次数>> targets

这两个结构,我选择了后者,因为如果使用unordered_map<string, multiset<string>> targets 遍历multiset的时候,不能删除元素,一旦删除元素,迭代器就失效了

再说一下为什么一定要增删元素呢,正如开篇我给出的图中所示,出发机场和到达机场是会重复的,搜索的过程没及时删除目的机场就会死循环。

所以搜索的过程中就是要不断的删multiset里的元素,那么推荐使用unordered_map<string, map<string, int>> targets。

在遍历 unordered_map<出发机场, map<到达机场, 航班次数>> targets的过程中,可以使用"航班次数"这个字段的数字做相应的增减,来标记到达机场是否使用过了。

如果“航班次数”大于零,说明目的地还可以飞,如果“航班次数”等于零说明目的地不能飞了,而不用对集合做删除元素或者增加元素的操作。

相当于说我不删,我就做一个标记!

3. 回溯法

这道题目我使用回溯法,那么下面按照我总结的回溯模板来:

void backtracking(参数) {if (终止条件) {存放结果;return;}for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {处理节点;backtracking(路径,选择列表); // 递归回溯,撤销处理结果}
}

本题以输入:[[“JFK”, “KUL”], [“JFK”, “NRT”], [“NRT”, “JFK”]为例,抽象为树形结构如下:
在这里插入图片描述
开始回溯三部曲:

  • 递归函数参数

在讲解映射关系的时候,已经讲过了,使用unordered_map<string, map<string, int>> targets; 来记录航班的映射关系,我定义为全局变量。

当然把参数放进函数里传进去也是可以的,我是尽量控制函数里参数的长度。

参数里还需要ticketNum,表示有多少个航班(终止条件会用上)。

代码如下:

// unordered_map<出发机场, map<到达机场, 航班次数>> targets
unordered_map<string, map<string, int>> targets;
bool backtracking(int ticketNum, vector<string>& result) {

注意函数返回值用的是bool!

一般函数返回值都是void,这次为什么是bool呢?

因为我们只需要找到一个行程,就是在树形结构中唯一的一条通向叶子节点的路线,所以找到了这个叶子节点了直接返回

当然本题的targets和result都需要初始化,代码如下:

for (const vector<string>& vec : tickets) {targets[vec[0]][vec[1]]++; // 记录映射关系
}
result.push_back("JFK"); // 起始机场
  • 递归终止条件

拿题目中的示例为例,输入: [[“MUC”, “LHR”], [“JFK”, “MUC”], [“SFO”, “SJC”], [“LHR”, “SFO”]] ,这是有4个航班,那么只要找出一种行程,行程里的机场个数是5就可以了。

所以终止条件是:我们回溯遍历的过程中,遇到的机场个数,如果达到了(航班数量+1),那么我们就找到了一个行程,把所有航班串在一起了。

代码如下:

if (result.size() == ticketNum + 1) {return true;
}
  • 单层搜索的逻辑

回溯的过程中,如何遍历一个机场所对应的所有机场呢?

这里刚刚说过,在选择映射函数的时候,不能选择unordered_map<string, multiset> targets, 因为一旦有元素增删multiset的迭代器就会失效,当然可能有牛逼的容器删除元素迭代器不会失效,这里就不在讨论了。

可以说本题既要找到一个对数据进行排序的容器,而且还要容易增删元素,迭代器还不能失效。

所以选择unordered_map<string, map<string, int>> targets 来做机场之间的映射。

遍历过程如下:

for (pair<const string, int>& target : targets[result[result.size() - 1]]) {if (target.second > 0 ) { // 记录到达机场是否飞过了result.push_back(target.first);target.second--;if (backtracking(ticketNum, result)) return true;result.pop_back();target.second++;}
}

可以看出 通过unordered_map<string, map<string, int>> targets里的int字段来判断 这个集合里的机场是否使用过,这样避免了直接去删元素。

代码实现:

class Solution {
private:
// unordered_map<出发机场, map<到达机场, 航班次数>> targets
unordered_map<string, map<string, int>> targets;
bool backtracking(int ticketNum, vector<string>& result) {if (result.size() == ticketNum + 1) {return true;}for (pair<const string, int>& target : targets[result[result.size() - 1]]) {if (target.second > 0 ) { // 记录到达机场是否飞过了result.push_back(target.first);target.second--;if (backtracking(ticketNum, result)) return true;result.pop_back();target.second++;}}return false;
}
public:vector<string> findItinerary(vector<vector<string>>& tickets) {targets.clear();vector<string> result;for (const vector<string>& vec : tickets) {targets[vec[0]][vec[1]]++; // 记录映射关系}result.push_back("JFK"); // 起始机场backtracking(tickets.size(), result);return result;}
};

注意:

for (pair<const string, int>& target : targets[result[result.size() - 1]])

一定要加上引用即 & target,因为后面有对 target.second 做减减操作,如果没有引用,单纯复制,这个结果就没记录下来,那最后的结果就不对了。

加上引用之后,就必须在 string 前面加上 const,因为map中的key 是不可修改了,这就是语法规定了

详细解析:
代码实现文章


51 N皇后(hard)

按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。

n 皇后问题 研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。

给你一个整数 n ,返回所有不同的 n 皇后问题 的解决方案。

每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中 ‘Q’ 和 ‘.’ 分别代表了皇后和空位。

思路:标准回溯法,再加一个isValid函数判断当前棋子是否可以放即可

首先来看一下皇后们的约束条件:

  • 不能同行
  • 不能同列
  • 不能同斜线

确定完约束条件,来看看究竟要怎么去搜索皇后们的位置,其实搜索皇后的位置,可以抽象为一棵树。

下面用一个 3 * 3 的棋盘,将搜索过程抽象为一棵树,如图:
在这里插入图片描述

从图中,可以看出,二维矩阵中矩阵的高就是这棵树的高度,矩阵的宽就是树形结构中每一个节点的宽度。

那么我们用皇后们的约束条件,来回溯搜索这棵树,只要搜索到了树的叶子节点,说明就找到了皇后们的合理位置了。

回溯三部曲:

  • 递归函数参数

依然是定义全局变量二维数组result来记录最终结果。

参数n是棋盘的大小,然后用row来记录当前遍历到棋盘的第几层了。

代码如下:

vector<vector<string>> result;
void backtracking(int n, int row, vector<string>& chessboard) {
  • 递归终止条件

可以看出,当递归到棋盘最底层(也就是叶子节点)的时候,就可以收集结果并返回了。

代码如下:

if (row == n) {result.push_back(chessboard);return;
}
  • 单层搜索的逻辑

递归深度就是row控制棋盘的行,每一层里for循环的col控制棋盘的列,一行一列,确定了放置皇后的位置。

每次都是要从新的一行的起始位置开始搜,所以都是从0开始。

代码如下:

for (int col = 0; col < n; col++) {if (isValid(row, col, chessboard, n)) { // 验证合法就可以放chessboard[row][col] = 'Q'; // 放置皇后backtracking(n, row + 1, chessboard);chessboard[row][col] = '.'; // 回溯,撤销皇后}
}

验证棋盘是否合法
按照如下标准去重:

  • 不能同行
  • 不能同列
  • 不能同斜线 (45度和135度角)
    代码如下:
bool isValid(int row, int col, vector<string>& chessboard, int n) {// 检查列for (int i = 0; i < row; i++) { // 这是一个剪枝if (chessboard[i][col] == 'Q') {return false;}}// 检查 45度角是否有皇后for (int i = row - 1, j = col - 1; i >=0 && j >= 0; i--, j--) {if (chessboard[i][j] == 'Q') {return false;}}// 检查 135度角是否有皇后for(int i = row - 1, j = col + 1; i >= 0 && j < n; i--, j++) {if (chessboard[i][j] == 'Q') {return false;}}return true;
}

为什么没有在同行进行检查呢?

  • 因为在单层搜索的过程中,每一层递归,只会选for循环(也就是同一行)里的一个元素,所以不用去重了。

代码实现:

class Solution {
private:
vector<vector<string>> result;
// n 为输入的棋盘大小
// row 是当前递归到棋盘的第几行了
void backtracking(int n, int row, vector<string>& chessboard) {if (row == n) {result.push_back(chessboard);return;}for (int col = 0; col < n; col++) {if (isValid(row, col, chessboard, n)) { // 验证合法就可以放chessboard[row][col] = 'Q'; // 放置皇后backtracking(n, row + 1, chessboard);chessboard[row][col] = '.'; // 回溯,撤销皇后}}
}
bool isValid(int row, int col, vector<string>& chessboard, int n) {// 检查列for (int i = 0; i < row; i++) { // 这是一个剪枝if (chessboard[i][col] == 'Q') {return false;}}// 检查 45度角是否有皇后for (int i = row - 1, j = col - 1; i >=0 && j >= 0; i--, j--) {if (chessboard[i][j] == 'Q') {return false;}}// 检查 135度角是否有皇后for(int i = row - 1, j = col + 1; i >= 0 && j < n; i--, j++) {if (chessboard[i][j] == 'Q') {return false;}}return true;
}
public:vector<vector<string>> solveNQueens(int n) {result.clear();std::vector<std::string> chessboard(n, std::string(n, '.'));backtracking(n, 0, chessboard);return result;}
};

详细解析:
思路视频
代码实现文章


37 解数独(hard)

编写一个程序,通过填充空格来解决数独问题。

数独的解法需 遵循如下规则:

数字 1-9 在每一行只能出现一次。
数字 1-9 在每一列只能出现一次。
数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。(请参考示例图)
数独部分空格内已填入了数字,空白格用 ‘.’ 表示。

思路:回溯法+二维递归

棋盘搜索问题可以使用回溯法暴力搜索,只不过这次我们要做的是二维递归。

怎么做二维递归呢?

N皇后问题是因为每一行每一列只放一个皇后,只需要一层for循环遍历一行,递归来遍历列,然后一行一列确定皇后的唯一位置。

本题就不一样了,本题中棋盘的每一个位置都要放一个数字(而N皇后是一行只放一个皇后),并检查数字是否合法,解数独的树形结构要比N皇后更宽更深。

因为这个树形结构太大了,抽取一部分,如图所示:

在这里插入图片描述
回溯三部曲

  • 递归函数以及参数

递归函数的返回值需要是bool类型,为什么呢?因为解数独找到一个符合的条件(就在树的叶子节点上)立刻就返回,相当于找从根节点到叶子节点一条唯一路径,所以需要使用bool返回值。

代码如下:

bool backtracking(vector<vector<char>>& board)
  • 递归终止条件

本题递归不用终止条件,解数独是要遍历整个树形结构寻找可能的叶子节点就立刻返回。

不用终止条件会不会死循环?

递归的下一层的棋盘一定比上一层的棋盘多一个数,等数填满了棋盘自然就终止(填满当然好了,说明找到结果了),所以不需要终止条件!

  • 递归单层搜索逻辑

在树形图中可以看出我们需要的是一个二维的递归(也就是两个for循环嵌套着递归)

一个for循环遍历棋盘的行,一个for循环遍历棋盘的列,一行一列确定下来之后,递归遍历这个位置放9个数字的可能性!

代码如下:(详细看注释)

bool backtracking(vector<vector<char>>& board) {for (int i = 0; i < board.size(); i++) {        // 遍历行for (int j = 0; j < board[0].size(); j++) { // 遍历列if (board[i][j] != '.') continue;for (char k = '1'; k <= '9'; k++) {     // (i, j) 这个位置放k是否合适if (isValid(i, j, k, board)) {board[i][j] = k;                // 放置kif (backtracking(board)) return true; // 如果找到合适一组立刻返回board[i][j] = '.';              // 回溯,撤销k}}return false;                           // 9个数都试完了,都不行,那么就返回false}}return true; // 遍历完没有返回false,说明找到了合适棋盘位置了
}

注意这里return false的地方,这里放return false 是有讲究的。

因为如果一行一列确定下来了,这里尝试了9个数都不行,说明这个棋盘找不到解决数独问题的解!

那么会直接返回, 这也就是为什么没有终止条件也不会永远填不满棋盘而无限递归下去!

判断棋盘是否合法

判断棋盘是否合法有如下三个维度:

  • 同行是否重复
  • 同列是否重复
  • 9宫格里是否重复
    代码如下:
bool isValid(int row, int col, char val, vector<vector<char>>& board) {for (int i = 0; i < 9; i++) { // 判断行里是否重复if (board[row][i] == val) {return false;}}for (int j = 0; j < 9; j++) { // 判断列里是否重复if (board[j][col] == val) {return false;}}int startRow = (row / 3) * 3;int startCol = (col / 3) * 3;for (int i = startRow; i < startRow + 3; i++) { // 判断9方格里是否重复for (int j = startCol; j < startCol + 3; j++) {if (board[i][j] == val ) {return false;}}}return true;
}

代码实现:

class Solution {
private:
bool backtracking(vector<vector<char>>& board) {for (int i = 0; i < board.size(); i++) {        // 遍历行for (int j = 0; j < board[0].size(); j++) { // 遍历列if (board[i][j] == '.') {for (char k = '1'; k <= '9'; k++) {     // (i, j) 这个位置放k是否合适if (isValid(i, j, k, board)) {board[i][j] = k;                // 放置kif (backtracking(board)) return true; // 如果找到合适一组立刻返回board[i][j] = '.';              // 回溯,撤销k}}return false;  // 9个数都试完了,都不行,那么就返回false}}}return true; // 遍历完没有返回false,说明找到了合适棋盘位置了
}
bool isValid(int row, int col, char val, vector<vector<char>>& board) {for (int i = 0; i < 9; i++) { // 判断行里是否重复if (board[row][i] == val) {return false;}}for (int j = 0; j < 9; j++) { // 判断列里是否重复if (board[j][col] == val) {return false;}}int startRow = (row / 3) * 3;int startCol = (col / 3) * 3;for (int i = startRow; i < startRow + 3; i++) { // 判断9方格里是否重复for (int j = startCol; j < startCol + 3; j++) {if (board[i][j] == val ) {return false;}}}return true;
}
public:void solveSudoku(vector<vector<char>>& board) {backtracking(board);}
};

详细解析:
思路视频
代码实现文章

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/281712.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

机器学习知识点复习 下(保研、复试、面试)百面机器学习笔记

机器学习知识点复习下 第八章、采样1.采样的作用 第九章、前向神经网络1.多层感知机与布尔函数2.神经网络中的激活函数3.多层感知机的反向传播算法4.神经网络训练技巧5.深度卷积神经网络6.深度残差网络 第十章、循环神经网络1.循环神经网络和卷积神经网络2.循环神经网络的梯度消…

【前端Vue】Vue3+Pinia小兔鲜电商项目第2篇:什么是pinia,1. 创建空Vue项目【附代码文档】

全套笔记资料代码移步&#xff1a; 前往gitee仓库查看 感兴趣的小伙伴可以自取哦&#xff0c;欢迎大家点赞转发~ 全套教程部分目录&#xff1a; 部分文件图片&#xff1a; 什么是pinia Pinia 是 Vue 的专属状态管理库&#xff0c;可以实现跨组件或页面共享状态&#xff0c;是…

数字电源浅析

电力电子技术是关于能量转换、调节、控制和管理等方面的学科,而数字电源则是电力电子技术的一种应用,是利用数字电路技术实现电源控制和管理的新型电源。 一、什么是数字电源 数字电源是一种数字控制的电源设备,可以通过数字控制芯片(DSP、MCU等)实现输出电压、电流、功…

TypeScript在学习(0)

1.什么是TypeScript? 答:TypeScript 是一种由微软开发的自由和开源的编程语言。它是 JavaScript 的一个超集&#xff0c;而且本质上向这个语言添加了可选的静态类型和基于类的面向对象编程。 个人浅见&#xff0c;我一直把ts简单理解成&#xff0c;其实就是javascript上多了…

插入排序+希尔排序

目录 插入排序&#xff1a; 希尔排序&#xff1a; 插入排序&#xff1a; 注意这里不要将插入排序和冒泡排序弄混&#xff1a; 插入排序是将数据不断放入前一个有序数列&#xff1a; // 插入排序 void InsertSort(int* a, int n) {for (int j 1; j < n; j){for (int i j;…

【嵌入式硬件】步进电机

1.步进电机简介 1.1步进电机基本原理 步进电机的英文是stepping motor。step的中文意思是行走、迈步。所以仅从字面上我们就可以得知,步进电机就是一步一步移动的电动机。说的官方一点儿,步进电机是一种将电脉冲信号转换成相应角位移或者线位移的电动机(直线电机)。下图为…

什么是物联网远程模块

在数字化和信息化的浪潮下&#xff0c;物联网技术正在以惊人的速度改变着我们的生活和生产方式。物联网远程模块&#xff0c;作为物联网技术的核心组件之一&#xff0c;正引领着这场变革。HiWoo Box就是这样一款出色的物联网远程模块&#xff0c;它通过支持远程透传、远程锁机、…

Flink GateWay、HiveServer2 和 hive on spark

Flink SQL Gateway简介 从官网的资料可以知道Flink SQL Gateway是一个服务&#xff0c;这个服务支持多个客户端并发的从远程提交任务。Flink SQL Gateway使任务的提交、元数据的查询、在线数据分析变得更简单。 Flink SQL Gateway的架构如下图&#xff0c;它由插件化的Endpoi…

AI原生安全 亚信安全首个“人工智能安全实用手册”开放阅览

不断涌现的AI技术新应用和大模型技术革新&#xff0c;让我们感叹从没有像今天这样&#xff0c;离人工智能的未来如此之近。 追逐AI原生&#xff1f;企业组织基于并利用大模型技术探索和开发AI应用的无限可能&#xff0c;迎接生产与业务模式的全面的革新。 我们更应关心AI安全原…

工控机丨丨工业电脑丨工控计算机丨工业一体机丨什么是工业一体机

工业一体机俗称工控机&#xff0c;是一种专门为工业应用而设计的计算机设备&#xff0c;主要应用于工厂、车间、仓库等工业场所。此外工控机还叫做工控计算机&#xff0c;通常采用工业级主板、工业级CPU、工业级硬盘、工业级内存和工业级电源等硬件组件&#xff0c;以确保其在高…

【Canvas与艺术】绘制一款色彩斑斓的调色盘状时钟表盘

【效果】 【代码】 <!DOCTYPE html> <html lang"utf-8"> <meta http-equiv"Content-Type" content"text/html; charsetutf-8"/> <head><title>调色盘时钟表</title><style type"text/css">…

Android Audio相关

AudioManager AudioService的Bp端&#xff0c;调用AudioManager>AudioService&#xff08;代码实现&#xff09; AudioService 继承自IAudioService.Stub&#xff0c;为Bn端 AudioSystem AudioService功能实现都依赖于AudioSystem&#xff0c;AudioService通过AudioSys…

大数据推给需要的人

1.编写一个程序&#xff0c;把变量n的初始值设置为1678&#xff0c;然后利用除法运算和取余运算把变量的每位数字都提出来并打印&#xff0c;输出结果为&#xff1a;n1678n的每位数字是1,6,7,8。 public static void main(String[]args) {int n1678;int a,b,c,d;an%10;bn/10%1…

vscode中转(跳板)连接目标主机

vscode中转&#xff08;跳板&#xff09;连接目标主机 文章目录 引言正文跳转配置本地密钥 总结 引言 简单讲解如何通过vscode经过跳板机到达目标机的方式&#xff0c;本文基于linux平台&#xff0c;理论上vscode是跨平台的1。 如下本机通过两层跳板到目标主机如何通过vscode…

TortoiseGit的安装和配置

作者介绍&#xff1a;本人笔名姑苏老陈&#xff0c;从事JAVA开发工作十多年了&#xff0c;带过大学刚毕业的实习生&#xff0c;也带过技术团队。最近有个朋友的表弟&#xff0c;马上要大学毕业了&#xff0c;想从事JAVA开发工作&#xff0c;但不知道从何处入手。于是&#xff0…

【RPG Maker MV 仿新仙剑 战斗场景UI (七)】

RPG Maker MV 仿新仙剑 战斗场景UI 七 法术物品窗口代码仿新仙剑效果 法术物品窗口 继续水点内容 现在发出及确认物品窗口显示及操作。 代码 function Window_BattleItem() {this.initialize.apply(this, arguments); }Window_BattleItem.prototype Object.create(Pal_Wind…

hololens 2 投屏 报错

使用Microsoft HoloLens投屏时&#xff0c;ip地址填对了&#xff0c;但是仍然报错&#xff0c;说hololens 2没有打开&#xff0c; 首先检查 开发人员选项 都打开&#xff0c;设备门户也打开 然后检查系统–体验共享&#xff0c;把共享都打开就可以了

第十节HarmonyOS 常用容器组件2-Counter

1、描述 计数器组件&#xff0c;提供相应的增加或者减少的计数操作。 说明&#xff1a; 该组件从API Version 7开始支持。后续版本如有新增内容&#xff0c;则采用上角标单独标记该内容的起始版本。 2、子组件 可以包含子组件。 3、接口 Counter() 从API version 9开始…

【python】

1.编译型和解释型 编译器软件&#xff1a;将书写的代码转换成一个二进制文件&#xff0c;优点是执行效率高&#xff0c;缺点是代码存在编码错误的时候&#xff0c;就不能产生中间文件。如&#xff1a;c. 解释型软件&#xff1a;在代码执行的时候&#xff0c;将代码转换…

1236 - 二分查找

代码 #include<bits/stdc.h> using namespace std; int a[1100000]; int main() {int n,x,l,r,p,mid,i;cin>>n;for(i1;i<n;i)cin>>a[i];cin>>x;l1;rn;p-1;while(l<r){mid(rl)/2;if(a[mid]x){pmid;break;}else if(x<a[mid]) rmid-1;else if(x…