【Godot 4.2】常见几何图形、网格、刻度线点求取函数及原理总结

概述

  • 本篇为ShapePoints静态函数库的补充和辅助文档。
  • ShapePoints函数库是一个用于生成常见几何图形顶点数据(PackedVector2Array)的静态函数库。
  • 生成的数据可用于_drawLine2DPolygon2D等进行绘制和显示。
  • 因为不断地持续扩展,ShapePoints函数库的函数数目在不断增加,同时涉及的图形类型也在发生变化。
  • 本篇按照一定的分类,阐述每个图形函数的原理和具体实现,以及具体使用。

注意:本篇基础内容写于2023年7月,由3篇文章汇总而成。ShapePoints函数库及其使用会单独发文贴出。本篇更接近原理讲解。


基础原理

  • 在一个平面中,确定一个直角坐标系后,平面上任意一点位置就可以用(x,y)这样的值对来表示,(x,y)可以被称为这个点的坐标。
  • 同样这个点(x,y)也可以理解为相对于坐标系原点(0,0),水平移动了x,垂直移动了y,也就是一个由原点指向(x,y)的向量。
  • 通过平面向量的加减乘除以及旋转操作,我们获得新的点的位置,一系列点的位置可以被顺序用线段连接起来,构成PolyLine(折线)或PolyGon(多边形,闭合的折线)
  • 这些点数据可以用于_drawLine2DPolygon2D等绘制和显示几何图形

基础图形

矩形

矩形最简单,计算出4个顶点就行。其运算不过是一些简单的向量加减法。
image.png

实现代码
# 返回矩形的顶点
static func rect(size:Vector2,offset:Vector2 = Vector2.ZERO) -> PackedVector2Array:var points:PackedVector2Array = [offset,offset + Vector2.RIGHT * size.x,offset + size,offset + Vector2.DOWN * size.y,offset]return points

正多边形

求正多边形的顶点,其本质是求圆上等分的点。可以通过向量旋转法求取。起始角度不同,图形发生相应旋转。
在这里插入图片描述

实现代码
# 返回正多边形顶点
static func regular_polygon(start_angle:int,edges:int,r:float,offset:Vector2 = Vector2.ZERO):var points:PackedVector2Arrayvar vec  = Vector2.RIGHT.rotated(deg_to_rad(start_angle)) * rfor i in range(edges):points.append(vec.rotated(2* PI/edges * i) + offset)return points

圆是边数很多的正多边形。问题在于这个边数计算,怎样才能保证任何半径下圆都看起来很平滑。

我的方法简单粗暴,边数直接等于2πr,也就是周长。这等于无论圆的半径是多少,它都要包含2πr个顶点。

实现代码
# 返回圆顶点
static func circle(r:float,offset:Vector2 = Vector2.ZERO):var points = regular_polygon(0,2 * PI * r,r,offset)points.append(points[0])return points

扇形

扇形是圆的一部分,起始和终止点都是圆心,从而组成闭合图形。

圆弧部分可以通过向量旋转求取的,具体调用弧形函数arc就可以。
image.png

实现代码
# 返回扇形顶点
# 注意start_angle和end_angle都是角度
static func sector(start_angle:int,end_angle:int,r:float):var points:PackedVector2Arraypoints.append(Vector2.ZERO)points.append_array(arc(start_angle,end_angle,r))points.append(Vector2.ZERO)return points

弧形

弧形是扇形去掉起始点也就是圆心之后的图形。

同样为了始终保持平滑效果,绘制的点个数是与r的大小相关的,即始终绘制θ×r个点。

θ为起始角度和结束角度之间的夹角的弧度值。
image.png

实现代码
# 弧形
# 注意start_angle和end_angle都是角度
static func arc(start_angle:int,end_angle:int,r:float,offset:Vector2 = Vector2.ZERO):var points:PackedVector2Arrayvar angle = deg_to_rad(end_angle - start_angle)var edges:float = ceilf(angle * r) # 要绘制的点的个数 = θ * rvar vec  = Vector2.RIGHT.rotated(deg_to_rad(start_angle)) * rfor i in range(edges+1):points.append(vec.rotated(angle/edges * i) + offset)return points

星形

星形是在两个半径不同的同心圆上求正多边形顶点。也是采用向量旋转法。
image.png

实现代码
# 星形
static func star(start_angle:int,edges:int,r:float,r2:float = 0,offset:Vector2 = Vector2.ZERO):if r2 == 0:r2 = r/2.0var points:PackedVector2Array# 外部半径var vec  = Vector2.RIGHT.rotated(deg_to_rad(start_angle)) * r# 内部半径var vec2  = Vector2.RIGHT.rotated(deg_to_rad(start_angle + 180/edges)) * r2for i in range(edges):points.append(vec.rotated(2 * PI/edges * i) + offset)points.append(vec2.rotated(2 * PI/edges * i) + offset)return points

圆角矩形

本质是在矩形四个角上绘制1/4圆弧。
image.png

实现代码
# 返回圆角矩形的顶点
# 注意:以(0,0)为几何中心
static func round_rect(size:Vector2,r1:float,r2:float,r3:float,r4:float,offset:Vector2 = Vector2.ZERO) -> PackedVector2Array:var points:PackedVector2Arraypoints.append_array(arc(180,270,r1,Vector2(r1,r1) + offset))points.append_array(arc(270,360,r2,Vector2(size.x - r2,r2) + offset))points.append_array(arc(0,90,r3,Vector2(size.x - r3,size.y -r3) + offset))points.append_array(arc(90,180,r4,Vector2(r4,size.y - r4) + offset))points.append(Vector2(0,r1)+offset)return points

倒角矩形

倒角矩形跟圆角矩形很像,只是更简单了,不用在四个角上画圆弧了,而是从矩形的4个顶点变为计算8个顶点。
image.png

实现代码
# 返回倒角矩形的顶点
# 注意:以(0,0)为几何中心
static func chamfer_rect(size:Vector2,a:float,b:float,c:float,d:float,offset:Vector2 = Vector2.ZERO) -> PackedVector2Array:var points:PackedVector2Array = [Vector2(0,a) + offset,Vector2(a,0) + offset,Vector2(size.x-b,0) + offset,Vector2(size.x,b) + offset,Vector2(size.x,size.y-c) + offset,Vector2(size.x-c,size.y) + offset,Vector2(d,size.y) + offset,Vector2(0,size.y-d) + offset]points.append(points[0]) # 闭合return points

胶囊形

胶囊形的本质是两个水平或垂直方向上的半圆弧+一定的偏移距离。
限定在矩形范围内的胶囊形示意图

实现代码
# 返回胶囊形的顶点
static func capsule(size:Vector2,offset:Vector2 = Vector2.ZERO) -> PackedVector2Array:var points:PackedVector2Array = []var r:float = min(size.x,size.y)/2.0if size.x>size.y: # 横向points.append_array(arc(90,270,r,Vector2(r,r) + offset))points.append_array(arc(-90,90,r,Vector2(size.x-r,r) + offset))else: # 纵向points.append_array(arc(180,360,r,Vector2(r,r) + offset))points.append_array(arc(0,180,r,Vector2(r,size.y-r) + offset))points.append(points[0]) # 闭合return points
@tool
extends Controlfunc _draw():var size = get_rect().sizedraw_polyline(ShapePoints.capsule(size),Color.GREEN_YELLOW,1)

效果:
胶囊形演示

梭形

梭形的本质是绘制两段在X轴或Y轴上对称的圆弧。而圆弧需要的就是半径、起始角度和结束角度。

所以问题就变成了求半径和角度的问题。
梭形一侧圆弧示意图
可以知道: r 2 = d y 2 + ( r − d x ) 2 r^2 = dy^2+(r-dx)^2 r2=dy2+(rdx)2

也就是: r 2 = d y 2 + r 2 − 2 r d x + d x 2 r^2 = dy^2+r^2-2rdx + dx^2 r2=dy2+r22rdx+dx2

两侧消去 r 2 r^2 r2,就变成 2 r d x = d y 2 + d x 2 2rdx = dy^2+dx^2 2rdx=dy2+dx2

最终半径 r = ( d y 2 + d x 2 ) / 2 d x r = (dy^2+dx^2)/2dx r=(dy2+dx2)/2dx

而因为 s i n θ = d y / r sinθ = dy/r sinθ=dy/r,所以 θ = a r c s i n ( d y / r ) θ = arcsin(dy/r) θ=arcsin(dy/r)

有了半径r和二分之一的夹角θ,就可以求圆弧了,反向的圆弧也可以求出。

实现代码
# 返回梭形的顶点
# 注意:以(0,0)为几何中心
static func spindle(size:Vector2,offset:Vector2 = Vector2.ZERO) -> PackedVector2Array:var points:PackedVector2Array = []var dx:float = size.x/2.0var dy:float = size.y/2.0var d_max = max(dx,dy)var d_min = min(dx,dy)var r = (pow(d_max,2.0) + pow(d_min,2.0))/(2.0 * d_min) # 圆弧半径var angle = rad_to_deg(asin(d_max/r))if dx<dy:points.append_array(arc(180-angle,180+angle,r,Vector2(r,dy)))points.append(Vector2(dx,0))points.append_array(arc(-angle,angle,r,Vector2(-r+2*dx+1,dy)))points.append(points[0]) # 闭合else:points.append_array(arc(270-angle,270+angle,r,Vector2(dx,r)))points.append(Vector2(size.x,dy))points.append_array(arc(90-angle,90+angle,r,Vector2(dx,-r+2*dy+1)))points.append(points[0]) # 闭合return points
效果测试
@tool
extends Controlfunc _draw():var size = get_rect().sizedraw_polyline(ShapePoints.spindle(size),Color.GREEN_YELLOW,1)

效果:
梭形绘图演示

特殊图形

太极图

最主要的阴阳鱼,几何组成却十分简单:可以看成是一个大半圆弧和两个反向的小半圆弧连接形成的。
1875660110.jpg

函数
# 太极
static func taiji(r:float,offset:Vector2 = Vector2.ZERO) -> Dictionary:var dict = {pan = circle(r,offset), # 底部圆盘yin = [], # 阴鱼yang = [], # 阳鱼yin_eye = circle(r/10,Vector2(0,-r/2)+ offset), # 阴鱼眼yang_eye = circle(r/10,Vector2(0,r/2)+ offset), # 阳鱼眼}# 阴鱼dict["yin"].append_array(arc(90,270,r,offset))dict["yin"].append_array(arc(-90,90,r/2,Vector2(0,-r/2)+offset))var ac = arc(90,270,r/2,Vector2(0,r/2)+offset)ac.reverse()dict["yin"].append_array(ac)# 阳鱼dict["yang"].append_array(arc(-90,90,r,offset))dict["yang"].append_array(arc(90,270,r/2,Vector2(0,r/2)+offset))var ac2 = arc(-90,90,r/2,Vector2(0,-r/2)+offset)ac2.reverse()dict["yang"].append_array(ac2)return dict
绘制测试
@tool
extends Controlfunc _draw():var rect = get_rect()var center = rect.get_center()var r = rect.size.y/2var w = rect.size.x - 10var offset = centervar taiji = ShapePoints.taiji(r,offset)for point in taiji["yin"]:draw_circle(point,0.5,Color.CHARTREUSE)draw_polyline(taiji["yin"],Color.AQUA,1)draw_polyline(taiji["yang"],Color.AQUA,1)draw_polyline(taiji["yin_eye"],Color.AQUA,1)draw_polyline(taiji["yang_eye"],Color.AQUA,1)

效果:
image.png

螺旋线

暂时还不是很完美。

函数
# 螺旋线
static func helix(start_angle:int,start_r:float,end_r:float,step:int =1,offset:Vector2 = Vector2.ZERO) -> PackedVector2Array:var points:PackedVector2Arrayvar steps = end_r - start_rfor i in range(steps):points.append(Vector2.RIGHT.rotated(deg_to_rad(start_angle + step * i)) * (start_r+i) + offset)return points
测试
@tool
extends Controlfunc _draw():var rect = get_rect()var center = rect.get_center()draw_polyline(ShapePoints.helix(0,0,rect.size.y * 2,1,center),Color.GREEN_YELLOW,2)

效果:
image.png

各种网格

矩形网格

最好是能够将网格绘制也像刻度线求取函数一样,封装成函数,通过传入参数后返回横线竖线线的集合,然后具体绘制可以在任何节点中进行。
函数化的好处还在于,你可以求取不同参数下的网格线,然后具体绘制的时候使用不同的粗细、颜色等。搭配起来可以绘制更复杂的网格线,比如心电图纸的大小格设计。

# 方形 - 网格线求取函数
static func rect_grid_lines(size:Vector2,cell_size:Vector2) -> Dictionary:var lines = {v_lines = [], # 垂直的网格线h_lines = []  # 水平的网格线}var v_line1 = [Vector2.ZERO,Vector2.DOWN * cell_size.y * size.y]var h_line1 = [Vector2.ZERO,Vector2.RIGHT * cell_size.x * size.x]lines["v_lines"].append(v_line1)lines["h_lines"].append(h_line1)for x in range(1,size.x+1):var offset_x = Vector2(cell_size.x,0) * xlines["v_lines"].append([v_line1[0] + offset_x,v_line1[1] + offset_x])for y in range(1,size.y+1):var offset_y = Vector2(0,cell_size.y) * ylines["h_lines"].append([h_line1[0] + offset_y,h_line1[1] + offset_y])return lines
@tool
extends Controlfunc _draw():var grid = ShapePoints.rect_grid_lines(Vector2(10,10),Vector2(50,50))# 绘制垂直线for line in grid["v_lines"]:draw_line(line[0],line[1],Color.GREEN_YELLOW,2)# 绘制水平线for line in grid["h_lines"]:draw_line(line[0],line[1],Color.GREEN_YELLOW,2)

用横竖线而不是矩形绘制的网格

绘制函数

因为_draw和draw_*之类的只能在CanvasItem类型及其子节点中使用,并且不能用于编写静态函数,所以好的办法就剩下将点、线之类的求取做成函数,而在实际的扩展节点中在基于这些求取函数编写进一步的绘制函数。

@tool
extends Controlfunc _draw():draw_grid(Vector2(10,10),Vector2(50,50))# 绘制网格函数
func draw_grid(size:Vector2,cell_size:Vector2,border_color:Color = Color.GREEN_YELLOW,border_width = 1) -> void:var grid = ShapePoints.rect_grid_lines(size,cell_size)# 绘制垂直线for line in grid["v_lines"]:draw_line(line[0],line[1],border_color,border_width)# 绘制水平线for line in grid["h_lines"]:draw_line(line[0],line[1],border_color,border_width)

网格线求取和网格线绘制函数的好处是,你可以轻松的基于其创建复杂的网格,比如下面这样的:

@tool
extends Controlfunc _draw():draw_grid(Vector2(50,50),Vector2(10,10),Color.ORANGE)draw_grid(Vector2(10,10),Vector2(50,50),Color.ORANGE_RED,2)

双层网格叠加实现的网格

矩形点网格

再绘制原点网格或十字网格的时候,要的不再是一条条的线,而是网格的交点。

# 方形 - 网格点求取函数
static func rect_grid_points(size:Vector2,cell_size:Vector2) ->PackedVector2Array:var points:PackedVector2Arrayfor x in range(size.x + 1):for y in range(size.y + 1):points.append(Vector2(x,y) * cell_size)return points
绘制函数

同样的我们可以在自定义控件内部定义参数化的点网格绘制函数:

# 绘制点网格函数
func draw_point_grid(size:Vector2,cell_size:Vector2,point_color:Color = Color.GREEN_YELLOW,r = 2) -> void:for point in ShapePoints.rect_grid_points(size,cell_size):draw_circle(point,r,point_color)

使用:

@tool
extends Controlfunc _draw():draw_point_grid(Vector2(10,10),Vector2(50,50),Color.GREEN_YELLOW,5)

简单的点网格绘制效果
也可以使用不同参数的多个点网格叠加:

@tool
extends Controlfunc _draw():draw_point_grid(Vector2(50,50),Vector2(10,10),Color.ORANGE)draw_point_grid(Vector2(10,10),Vector2(50,50),Color.ORANGE_RED,5)

双层点网格叠加效果

十字线网格

# 返回指定点为中心,给定长度的两条互相垂直线段,可以用于绘制十字坐标线
static func line_cross(position:Vector2,length:float,start_angle:int = 0) -> Array:# 水平线段俩端点var h_line = [Vector2.LEFT.rotated(start_angle) * length/2.0 + position,Vector2.RIGHT.rotated(start_angle) * length/2.0 + position,]# 水平线段俩端点var v_line = [Vector2.UP.rotated(start_angle) * length/2.0 + position,Vector2.DOWN.rotated(start_angle) * length/2.0 + position,]return [h_line,v_line]
绘制函数

控件内部绘制十字线网格函数:

# 绘制十字网格函数
func draw_line_cross_grid(size:Vector2,cell_size:Vector2,color:Color = Color.GREEN_YELLOW,length = 10,start_angle:int = 0):for point in ShapePoints.rect_grid_points(size,cell_size):var line_cross = ShapePoints.line_cross(point,length,start_angle)draw_line(line_cross[0][0],line_cross[0][1],Color.GREEN_YELLOW,1)draw_line(line_cross[1][0],line_cross[1][1],Color.GREEN_YELLOW,1)

使用:

@tool
extends Controlfunc _draw():draw_line_cross_grid(Vector2(10,10),Vector2(50,50))

简单的十字网格

旋转45度

因为设定了start_angle参数,所以理论上你可以任意设定十字的旋转角度,甚至将其做成动画。

@tool
extends Controlfunc _draw():draw_line_cross_grid(Vector2(10,10),Vector2(50,50),Color.GREEN_YELLOW,10,45)

45度旋转后的十字组成的网格

三角点网格

image.png
特点是:

  • 偶数行不偏移,绘制n+1个点
  • 奇数行向右半偏移,并且点数比奇数行少1
# 三角 - 网格点求取函数
static func triangle_grid_points(size:Vector2,cell_size:Vector2) ->PackedVector2Array:var points:PackedVector2Arrayfor y in range(size.y + 1):if y % 2 == 0: # 偶数行for x in range(size.x + 1):points.append(Vector2(x,y) * cell_size)else: # 奇数行for x in range(size.x):points.append(Vector2(x,y) * cell_size + Vector2(cell_size.x/2,0))return points
绘制函数
# 绘制三角网格 - 点网格函数
func draw_triangle_point_grid(size:Vector2,cell_size:Vector2,point_color:Color = Color.GREEN_YELLOW,r = 2) -> void:for point in ShapePoints.triangle_grid_points(size,cell_size):draw_circle(point,r,point_color)

三角网格点网格绘制

六边形点网格

image.png
六边形网格的顶点可以在三角网格点的基础上轻松获取,规律就是:

  • 将奇偶行调换一下位置,也就是偶数行进行半偏移,而奇数行不进行偏移
  • 偶数行:(x+1) % 3 == 0时不画点
  • 奇数行:x % 3 == 1时不画点
# 六边形 - 网格点求取函数
static func hex_grid_points(size:Vector2,cell_size:Vector2) ->PackedVector2Array:var points:PackedVector2Arrayfor y in range(size.y + 1):if y % 2 == 0: # 偶数行for x in range(size.x):if (x+1)% 3 != 0:points.append(Vector2(x,y) * cell_size + Vector2(cell_size.x/2,0))else: # 奇数行for x in range(size.x + 1):if x % 3 != 1:points.append(Vector2(x,y) * cell_size)return points
绘制函数
# 绘制六边形网格 - 点网格函数
func draw_hex_point_grid(size:Vector2,cell_size:Vector2,point_color:Color = Color.GREEN_YELLOW,r = 2) -> void:for point in ShapePoints.hex_grid_points(size,cell_size):draw_circle(point,r,point_color)

使用:

@tool
extends Controlfunc _draw():draw_hex_point_grid(Vector2(10,10),Vector2(50,50),Color.GREEN_YELLOW,5)

六边形网格-点网格绘制

@tool
extends Controlfunc _draw():draw_hex_point_grid(Vector2(30,30),Vector2(20,20),Color.ORANGE,2)

image.png

棋盘格

# 矩形网格 - 棋盘格矩形求取函数
static func checker_board_rects(size:Vector2,cell_size:Vector2) -> Array:var rects_yang:Array[Rect2]var rects_yin:Array[Rect2]for x in range(size.x):for y in range(size.y):var pos = Vector2(x,y) * cell_sizeif (x % 2 == 0 and y % 2 == 0) or (x % 2 == 1 and y % 2 == 1):rects_yang.append(Rect2(pos,cell_size))else:rects_yin.append(Rect2(pos,cell_size))return [rects_yang,rects_yin]

绘制函数

# 矩形棋盘格绘制函数
func draw_checker_board_grid(size:Vector2,cell_size:Vector2,yang_color:Color = Color.WHITE,yin_color:Color = Color.DIM_GRAY,draw_grid_lines:bool = false,border_color:Color = Color.DIM_GRAY.darkened(0.5),border_width:int = 1) -> void:var grid = ShapePoints.checker_board_rects(size,cell_size)var rects_yang:Array[Rect2] = grid[0]var rects_yin:Array[Rect2] = grid[1]for rect in rects_yang:draw_rect(rect,yang_color)for rect in rects_yin:draw_rect(rect,yin_color)if draw_grid_lines: # 绘制网格线draw_line_grid(size,cell_size,border_color,border_width)

使用:

@tool
extends Controlfunc _draw():draw_checker_board_grid(Vector2(9,9),Vector2(20,20))

默认样式

@tool
extends Controlfunc _draw():draw_checker_board_grid(Vector2(9,9),Vector2(20,20),Color.ORANGE_RED,Color.ORANGE,true)

自定义颜色+绘制边线

@tool
extends Controlfunc _draw():draw_checker_board_grid(Vector2(9,9),Vector2(20,20),Color.GREEN_YELLOW,Color.YELLOW,true,Color.GREEN_YELLOW.darkened(0.2),1)

自定义颜色+自定义边线颜色

刻度线

弧形刻度线

概述

在制作一些钟表、压力表以及其他一些控件时,存在弧形刻度或圆形刻度线绘制需求,为了减少重复造轮子,搞了一个函数。
它可以轻松的求取和返回指定参数的弧形刻度线集合。

# 返回指定范围的弧形刻度线起始点坐标集合
# start_angle:起始角度
# end_angle:结束角度
# steps:切分次数
# r:半径
# length:刻度线长
func arc_scale(start_angle:int,end_angle:int,steps:int,r:float,length:float) -> Array:var scales:Array = []var vec1 = (Vector2.RIGHT  * (r-length)).rotated(deg_to_rad(start_angle))var vec2 = (Vector2.RIGHT  * r).rotated(deg_to_rad(start_angle))var angle = deg_to_rad(end_angle - start_angle) # 夹角for i in range(steps+1):var line = [vec1.rotated((angle/steps) * i),vec2.rotated((angle/steps) * i)]scales.append(line)return scales

通过遍历返回的刻度线起始坐标,就可以绘制刻度线了。

绘制钟表刻度
@tool
extends Controlfunc _draw():var rect = get_rect()var center = rect.get_center()var r = rect.size.y/2draw_circle(center,r,Color.AZURE)# 绘制基础刻度var lines = arc_scale(-90,270,12,r,10)for line in lines:draw_line(line[0]+center,line[1]+center,Color.AQUA,2)var lines2 = arc_scale(-90,270,60,r,5)for line in lines2:draw_line(line[0]+center,line[1]+center,Color.AQUA,1)

image.png

绘制压力表刻度
@tool
extends Controlfunc _draw():var rect = get_rect()var center = rect.get_center()var r = rect.size.y/2draw_circle(center,r,Color.AZURE)# 最细刻度var lines3 = arc_scale(-(270-45),90-45,60,r,4)for line in lines3:draw_line(line[0]+center,line[1]+center,Color.AQUA,1)# 中刻度var lines2 = arc_scale(-(270-45),90-45,12,r,8)for line in lines2:draw_line(line[0]+center,line[1]+center,Color.AQUA,1)# 大刻度var lines = arc_scale(-(270-45),90-45,6,r,10)for line in lines:draw_line(line[0]+center,line[1]+center,Color.CADET_BLUE,2)

在这里插入图片描述

直线刻度

函数
# 返回指定范围的直线刻度线起始点坐标集合
func line_scale(ruler_width:float,steps:int,length:float):var scales:Array = []var vec1 = Vector2.ZEROvar vec2 = Vector2.DOWN * lengthvar space = ruler_width/steps  # 单位间隔for i in range(steps+1):var line = [vec1 + Vector2(space,0) * i,vec2 + Vector2(space,0) * i]scales.append(line)return scales
绘制直尺刻度
@tool
extends Controlfunc _draw():var rect = get_rect()var center = rect.get_center()var r = rect.size.y/2var w = rect.size.x - 10var offset = Vector2(5,5)draw_rect(rect,Color("orange").lightened(0.2))draw_rect(Rect2(Vector2.ZERO,Vector2(rect.size.x,20)),Color("orange").lightened(0.4))# 最细刻度var lines = line_scale(w,100,5)for line in lines:draw_line(line[0]+offset,line[1]+offset,Color("#444").lightened(0.5),1)# 最细刻度var lines2 = line_scale(w,20,8)for line in lines2:draw_line(line[0]+offset,line[1]+offset,Color("#444").lightened(0.4),1)# 最细刻度var lines3 = line_scale(w,10,10)for line in lines3:draw_line(line[0]+offset,line[1]+offset,Color("#444").darkened(0.4),2)

image.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/281884.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【创建进程】fork函数与写时拷贝

文章目录 fork函数fork如何返回两个值&#xff08;fork的工作原理&#xff09;如何解释父子进程相互输出printf 写时拷贝 fork函数 #include <unistd.h> pid_t fork(void); 返回值&#xff1a;自进程中返回0&#xff0c;父进程返回子进程id&#xff0c;出错返回-1 fork函…

LiveGBS流媒体平台GB/T28181功能-大屏播放上大屏支持轮巡播放分屏轮巡值守播放监控视频轮播大屏轮询播放轮播

LiveGBS支持-大屏播放上大屏支持轮巡播放分屏轮巡值守播放监控视频轮播大屏轮询播放轮播 1、轮播功能2、分屏展示3、选择轮播通道4、配置轮播间隔(秒)5、点击开始轮播6、轮播停止及全屏7、搭建GB28181视频直播平台 1、轮播功能 视频监控项目使用过程中&#xff0c;有时需要大屏…

Java 模拟Spring,实现IOC和AOP的核心(一)

在这里我要实现的是Spring的IOC和AOP的核心&#xff0c;而且有关IOC的实现&#xff0c;注解XML能混合使用&#xff01; 参考资料&#xff1a; IOC&#xff1a;控制反转&#xff08;Inversion of Control&#xff0c;缩写为IoC&#xff09;&#xff0c;是面向对象编程中的一种…

OpenLayers基础教程——使用WebGL加载海量数据(1)

1、前言 最近遇到一个问题&#xff1a;如何在OpenLayers中高效加载海量的场强点&#xff1f;由于项目中的一些要求&#xff0c;不能使用聚合的方法加载。一番搜索之后发现&#xff1a;OpenLayers中有一个WebGLPoints类&#xff0c;使用该类可以轻松应对几十万的数据量&#xf…

3D高斯泼溅的崛起

沉浸式媒体领域正在以前所未有的速度发展&#xff0c;其中 3D 高斯溅射成为一项关键突破。 这项技术在广泛的应用中看起来非常有前景&#xff0c;并且可能会彻底改变我们未来创建数字环境以及与数字环境交互的方式。 在本文中&#xff0c;我们将通过与摄影测量和 NeRF 等前辈进…

【软考高项】十五、信息系统工程之系统集成

1、集成基础 定义&#xff1a;通过硬件平台、网络通信平台、数据库平台、工具平台、应用软件平台将各类资源有机、高效地集成到一起&#xff0c;形成一个完整的工作台面 基本原则包括:开放性、结构化、先进性和主流化 2、网络集成 包括&#xff1a;传输子系统、交换子系统、…

Google的MELON: 通过未定位图像重建精确3D模型的突破性算法

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

QML TextField 默认无法鼠标选中内容

1.import QtQuick.Controls 2.0 后的TextField默认无法选中内容如下图&#xff1a; 2.增加属性设置 selectByMouse: true 可以选中内容了 TextField{ selectByMouse: true text:"1234567890987654321" } 效果如下:

安装调试kotti_ai:AI+互联网企业级部署应用软件包@riscv+OpenKylin

先上结论&#xff1a;riscvOpenKylin可以安装pyramidkottikotti_ai 但是paddle_serving_client无法安装&#xff0c;项目的AI实现部分需要改用其它方法&#xff0c;比如onnx。最终onnx也没有装成&#xff0c;只好用飞桨自己的推理。 安装kotti pip install kotti 安装kotti和…

【Git】第一课:Git的介绍

简介 什么是Git? Git是一个开源的分布式版本控制系统&#xff0c;用于跟踪代码的改变和协同开发。它最初由Linus Torvalds为了管理Linux内核开发而创建&#xff0c;现已成为开源软件开发中最流行的版本控制系统&#xff0c;没有之一。Git允许多人同时在不同的分支上工作&…

将main打包成jar;idea打包main为jar包运行

将main打包成jar&#xff1b;idea打包main为jar包运行 适用场景&#xff1a;可以封装一些小工具。 配置jar Maven中添加 <packaging>jar</packaging>将其打包为jar。 设置运行入口main 编译jar 看到jar输出 运行效果&#xff1a; 其中&#xff0c;三方依赖也被…

DEYOv2: Rank Feature with Greedy Matchingfor End-to-End Object Detection

摘要 与前代类似&#xff0c; DEYOv2 采用渐进式推理方法 来加速模型训练并提高性能。该研究深入探讨了一对一匹配在优化器中的局限性&#xff0c;并提出了有效解决该问题的解决方案&#xff0c;如Rank 特征和贪婪匹配 。这种方法使DEYOv2的第三阶段能够最大限度地从第一和第二…

【IEEE】Multimodal Machine Learning: A Survey and Taxonomy

不废话&#xff0c;先上思维导图&#xff0c;哈哈哈&#xff01; 论文题目Machine Learning: A Survey and Taxonomy作者Tadas Baltrusaitis , Chaitanya Ahuja , and Louis-Philippe Morency状态已读完会议或者期刊名称IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE IN…

电机与直线模组选型

一。普通电机选型 普通电机选型&#xff08;一&#xff09; 三相异步电机 定子&#xff1a;产生旋转磁场 转子&#xff1a;切割磁场&#xff0c;产生洛伦兹力 结构简单&#xff0c;成本低&#xff0c;稳定 效率较低&#xff0c;转速不稳定 N60f/P 定子旋转速度&#xff1a;150…

ubuntu系统下如何使用vscode编译和调试#小白入门#

编程环境&#xff1a;ubuntu系统为18.04.1&#xff0c;vscode版本为1.66.2 一、VSCode切换中文显示&#xff1a; 1、vscode安装完成后启动,在左侧externsions中搜索“简体中文”插件&#xff0c;并完成安装&#xff1a; 2、选择右下角齿轮形状的"Manage"&#xff…

运动想象 (MI) 迁移学习系列 (14) : EEGNet-Fine tuning

运动想象迁移学习系列:EEGNet-Fine tuning 0. 引言1. 主要贡献2. 提出的方法2.1 EEGNet框架2.2 微调 3. 实验结果3.1 各模型整体分类结果3.2 算法复杂度比较3.3 不同微调方法比较 4. 总结欢迎来稿 论文地址&#xff1a;https://www.nature.com/articles/s41598-021-99114-1#cit…

【HTTP完全注解】范围请求

范围请求 范围请求是HTTP的一种内容协商机制&#xff0c;该机制允许客户端只请求资源的部分内容。范围请求在传送大的媒体文件&#xff0c;或者与文件下载的断点续传功能搭配使用时非常有用。 范围请求的工作流程 范围请求通过在HTTP请求标头Range中表明需要请求的部分资源的…

可视化日记——极坐标绘制雷达图

目录 一、创建极坐标 二、数据集准备 三、划分角度 四、指定半径 五、绘制 一、创建极坐标 Python中没有直接画雷达图的函数&#xff0c;若要绘制需要先创建画布和极坐标轴域&#xff0c;再设定角度与半径的参数&#xff08;极坐标中角度与半径确定一个点的位置&#xff…

专业135+总分400+重庆邮电大学801信号与系统考研经验重邮电子信息与通信工程,真题,大纲,参考书。

今年分数出来还是比较满意&#xff0c;专业801信号与系统135&#xff0c;总分400&#xff0c;没想到自己也可以考出400以上的分数&#xff0c;一年的努力付出都是值得的&#xff0c;总结一下自己的复习心得&#xff0c;希望对大家复习有所帮助。专业课&#xff1a;&#xff08;…

(ROOT)KAFKA详解

生产篇 使用 /** Licensed to the Apache Software Foundation (ASF) under one or more* contributor license agreements. See the NOTICE file distributed with* this work for additional information regarding copyright ownership.* The ASF licenses this file to Y…