机器学习 - 准备数据

“Data” in machine learning can be almost anything you can imagine. A table of big Excel spreadsheet, images, videos, audio files, text and more.

机器学习其实可以分为两部分

  1. 将不管是什么data,都转成numbers.
  2. 挑选或者建立一个模型来学习这些numbers as best as possible.

下面是代码展示,创建一个straight line data

import torch 
from torch import nn  # nn: neural networks. This package contains the building blocks for creating neural networks 
import matplotlib.pyplot as plt # Create linear regression parameters
weight = 0.7
bias = 0.3 # Create data 
start = 0
end = 1
step = 0.02 
X = torch.arange(start, end, step).unsqueeze(dim=1)  # X is features
y = weight * X + bias   # y is labels
print(X[:10])
print(y[:10])# 结果如下
tensor([[0.0000],[0.0200],[0.0400],[0.0600],[0.0800],[0.1000],[0.1200],[0.1400],[0.1600],[0.1800]])
tensor([[0.3000],[0.3140],[0.3280],[0.3420],[0.3560],[0.3700],[0.3840],[0.3980],[0.4120],[0.4260]])

将上面获取到的数据进行拆分,每部分数据带有不同的意思。

SplitPurposeAmount of total dataHow often is it used?
Training setThe model learns from this data (like the course materials you study during the semester)~60-80%Always
Validation setThe model gets tuned on this data (like the practice exam you take before the final exam).~10-20%Often but not always
Testing setThe model gets evaluated on this data to test what it has leanred (like the final exam you take at the end of the semester).~10-20%Always

When dealing with real-world data, this step is typically done right at the start of a project (the test set should always be kept separate from all other data). Let the model learn on training data and then evaluate the model on test data to get an indication of how well it generalizes to unseen examples.

下面是代码。

# Create train/test split 
train_split = int(0.8 * len(X))
X_train, y_train = X[:train_split], y[:train_split]
X_test, y_test = X[train_split:], y[train_split:]# Learn the relationship between X_train and y_train
print(f"X_train length: {len(X_train)}")
print(f"y_train length: {len(y_train)}")
# Learn the relationship between X_test and y_test
print(f"X_test length: {len(X_test)}")
print(f"y_test length: {len(y_test)}")# 输出如下
X_train length: 40
y_train length: 40
X_test length: 10
y_test length: 10

通过将各个数字显示出来,更直观

plt.figure(figsize=(10, 7))# s 代表是散点的大小
plt.scatter(X_train, y_train, c="b", s=4, label="Training data")
plt.scatter(X_test, y_test, c="r", s=4, label="Testing data")plt.legend(prop={"size": 14})
plt.show()

结果如图
都看到这了,给个赞呗~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/283629.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

js模版字符串-标签模版

模版字符串 js模版字符串使用来创建模版字符串字面量,例如 const name "yu" console.log(hello ${name})很多人都知道。但是其实我们可以定义标签函数来自定义返回结果。 标签函数 带标签的模板是模板字面量的一种更高级的形式,它允许你使…

阿里云ecs服务器配置反向代理上传图片

本文所有软件地址: 链接:https://pan.baidu.com/s/12OSFilS-HNsHeXTOM47iaA 提取码:dqph 为什么要使用阿里云服务器? 项目想让别人通过外网进行访问就需要部署到我们的服务器当中 1.国内知名的服务器介绍 国内比较知名的一些…

什么是行业垂直类媒体?有哪些?怎么邀约

传媒如春雨,润物细无声,大家好,我是51媒体胡老师。 行业垂直类媒体是聚焦于特定行业或领域的媒体平台。 行业垂直类媒体不同于主流媒体,它们专注于提供与某个特定领域相关的深入内容和服务,例如商业新闻、旅游、数字…

seleniumUI自动化实例(登录CSDN页面)

今天分享一个CSDN登录模块的登录场景 1.配置文件 CSDNconf.py: from selenium import webdriver options webdriver.ChromeOptions() options.binary_location r"D:\Program Files\360\360se6\Application\360se.exe" # 360浏览器安装地址 driver w…

C++ Qt开发:QUdpSocket实现组播通信

Qt 是一个跨平台C图形界面开发库,利用Qt可以快速开发跨平台窗体应用程序,在Qt中我们可以通过拖拽的方式将不同组件放到指定的位置,实现图形化开发极大的方便了开发效率,本章将重点介绍如何运用QUdpSocket组件实现基于UDP的组播通信…

MyBatis3源码深度解析(十七)MyBatis缓存(一)一级缓存和二级缓存的实现原理

文章目录 前言第六章 MyBatis缓存6.1 MyBatis缓存实现类6.2 MyBatis一级缓存实现原理6.2.1 一级缓存在查询时的使用6.2.2 一级缓存在更新时的清空 6.3 MyBatis二级缓存的实现原理6.3.1 实现的二级缓存的Executor类型6.3.2 二级缓存在查询时使用6.3.3 二级缓存在更新时清空 前言…

Nginx 的安装、启动和关闭

文章目录 一、背景说明二、Nginx 的安装2.1、依赖的安装2.2、Nginx 安装2.3、验证安装 三、启动 Nginx3.1、普通启动3.2、如何判断nginx已启动3.3、通过配置启动3.4、设置开机启动 四、关闭 Nginx4.1、优雅地关闭4.2、快速关闭4.3、只关闭主进程4.4、使用nginx关闭服务 五、重启…

计算机网络:数据交换方式

计算机网络:数据交换方式 电路交换分组交换报文交换传输对比 本博客介绍计算机之间数据交换的三种方式,分别是电路交换、分组交换以及报文交换。 电路交换 我们首先来看电路交换,在电话问世后不久,人们就发现要让所有的电话机都…

Springboot-软件授权License

无意中看到了一个简单方便的授权方式,只需几步就可集成到boot项目中。 先上地址:smart-license: 保护个人与企业的软件作品权益,降低盗版造成的损失。PS:因个人精力有限,不再提供该项目的咨询答疑服务。 Smart-licen…

【小米汽车SU7实测】 小米汽车su7到底行不行?小米新能源轿车体验感怎么样?

小米汽车SU7是小米汽车的首款车型,定位“C级高性能生态科技轿车”,也是小米迈入新能源赛道的首次成果落地。 首先,让我们来谈谈它的性能。试驾过程中,小米SU7展现出了惊人的加速能力,0-100km/h加速仅需2.78秒&#xf…

pytest全局配置+前后只固件配置

pytest全局配置前后只固件配置 通过读取pytest.ini配置文件运行通过读取pytest.ini配置文件运行无条件跳过pytest.initest_mashang.pyrun.py 有条件跳过test_mashang.py pytest框架实现的一些前后置(固件、夹具)处理方法一(封装)方…

Kafka总结问题

Kafka Kafka Kafka Kafka的核心概念/ 结构 topoic Topic 被称为主题,在 kafka 中,使用一个类别属性来划分消息的所属类,划分消息的这个类称为 topic。topic 相当于消息的分配标签,是一个逻辑概念。主题好比是数据库的表&#xff0…

C++进阶之路---C++11相关特性 | 左值引用 | 右值引用 | 完美转发

顾得泉:个人主页 个人专栏:《Linux操作系统》 《C从入门到精通》 《LeedCode刷题》 键盘敲烂,年薪百万! 一、C11简介 在2003年C标准委员会曾经提交了一份技术勘误表(简称TC1),使得C03这个名字已经取代了C98称为C11之…

全球大型语言模型(LLMS)现状与比较

我用上个博文的工具将一篇ppt转换成了图片,现分享给各位看官。 第一部分:国外大语言模型介绍 1,openai的Chatgpt 免费使用方法1:choose-carhttps://share.freegpts.org/list 免费使用方法2:Shared Chathttps://share…

【Java】Map和Set

文章目录 一、Map和Set的概念二、模型三、Map的说明3.1 Map.Entry<K, V>的说明3.2 Map 的常用方法 四、Set的说明4.1 Set的常用方法 一、Map和Set的概念 Map和set是一种专门用来进行搜索的容器或者数据结构&#xff0c;其搜索的效率与其具体的实例化子类有关&#xff0c…

redis和rabbitmq实现延时队列

redis和rabbitmq实现延时队列 延迟队列使用场景Redis中zset实现延时队列Rabbitmq实现延迟队列 延迟队列使用场景 1. 订单超时处理 延迟队列可以用于处理订单超时问题。当用户下单后&#xff0c;将订单信息放入延迟队列&#xff0c;并设置一定的超时时间。如果在超时时间内用户…

Ollama 运行 Cohere 的 command-r 模型

Ollama 运行 Cohere 的 command-r 模型 0. 引言1. 安装 MSYS22. 安装 Golang3. Build Ollama4. 运行 command-r 0. 引言 Command-R Command-R 是一种大型语言模型&#xff0c;针对对话交互和长上下文任务进行了优化。它针对的是“可扩展”类别的模型&#xff0c;这些模型在高…

CTF题型 Http请求走私总结Burp靶场例题

CTF题型 Http请求走私总结&靶场例题 文章目录 CTF题型 Http请求走私总结&靶场例题HTTP请求走私HTTP请求走私漏洞原理分析为什么用前端服务器漏洞原理界定标准界定长度 重要!!!实验环境前提POST数据包结构必要结构快速判断Http请求走私类型时间延迟CL-TETE-CL 练习例题C…

代码随想录阅读笔记-栈与队列【用栈实现队列】

题目 使用栈实现队列的下列操作&#xff1a; push(x) -- 将一个元素放入队列的尾部。 pop() -- 从队列首部移除元素。 peek() -- 返回队列首部的元素。 empty() -- 返回队列是否为空。 示例: MyQueue queue new MyQueue(); queue.push(1); queue.push(2); queue.peek(); …

GPT实战系列-智谱GLM-4的模型调用

GPT实战系列-智谱GLM-4的模型调用 GPT专栏文章&#xff1a; GPT实战系列-实战Qwen通义千问在Cuda 1224G部署方案_通义千问 ptuning-CSDN博客 GPT实战系列-ChatGLM3本地部署CUDA111080Ti显卡24G实战方案 GPT实战系列-Baichuan2本地化部署实战方案 GPT实战系列-让CodeGeeX2帮…