数据分析-Pandas序列滑动窗口配置参数

数据分析-Pandas序列滑动窗口配置参数

数据分析和处理中,难免会遇到各种数据,那么数据呈现怎样的规律呢?不管金融数据,风控数据,营销数据等等,莫不如此。如何通过图示展示数据的规律?

数据表,时间序列数据在数据分析建模中很常见,例如天气预报,空气状态监测,股票交易等金融场景。数据分析过程中重新调整,重塑数据表是很重要的技巧,此处选择Titanic数据,以及巴黎、伦敦欧洲城市空气质量监测 N O 2 NO_2 NO2数据作为样例。

数据分析

数据分析-Pandas如何转换产生新列

数据分析-Pandas如何统计数据概况

数据分析-Pandas如何轻松处理时间序列数据

数据分析-Pandas如何选择数据子集

数据分析-Pandas如何重塑数据表-CSDN博客

本文用到的样例数据:

Titanic数据

空气质量监测 N O 2 NO_2 NO2数据

样例代码:

源代码参考 Pandas如何重塑数据表

源代码参考 python数据分析-数据表读写到pandas

导入关键模块

import pandas as pd
import numpy as np
import matplotlib.pyplot as pltplt.close("all")

时间序列,有时候需要观察一个窗口下的数据统计,比如,股市中的移动平均曲线,气象监测数据的移动平均。滑动窗口可以过滤掉不必要的高频信号。

窗口居中

通用滑动窗口,默认情况下,标签设置在窗口的右边缘,但可以使用关键字,以便可以在中心设置标签。center

times = ['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05', '2020-01-06', '2020-01-07', '2020-01-08', '2020-01-09', '2020-01-10']s = pd.Series(range(10), index=pd.DatetimeIndex(times))
print(s)ma = s.rolling(window=5).mean()
print (ma)ma_c = s.rolling(window=5, center=True).mean()
print (ma_c)

为了方便理解,采用连续整数数值作为序列。可以看出,数值序列的值是不变的,改变的是输出数值的位置,index

# s 
2020-01-01    0
2020-01-02    1
2020-01-03    2
2020-01-04    3
2020-01-05    4
2020-01-06    5
2020-01-07    6
2020-01-08    7
2020-01-09    8
2020-01-10    9
dtype: int64# ma
2020-01-01    NaN
2020-01-02    NaN
2020-01-03    NaN
2020-01-04    NaN
2020-01-05    2.0 # 第一个数值位置
2020-01-06    3.0
2020-01-07    4.0
2020-01-08    5.0
2020-01-09    6.0
2020-01-10    7.0 # 最后一个数值位置# ma_c
2020-01-01    NaN
2020-01-02    NaN
2020-01-03    2.0 # 第一个数值位置
2020-01-04    3.0
2020-01-05    4.0
2020-01-06    5.0
2020-01-07    6.0
2020-01-08    7.0 # 最后一个数值位置
2020-01-09    NaN
2020-01-10    NaN

窗口端点的闭合

可以使用以下参数指定在滚动窗口计算中包含间隔端点:closed

含义
'right'右端点闭合
'left'左端点闭合
'both'两个端点闭合
'neither'两个端点不闭合
times = ['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05', '2020-01-06', '2020-01-07', '2020-01-08', '2020-01-09', '2020-01-10']df = pd.Dataframe({"x" : range(10)}, index=pd.DatetimeIndex(times))
print(df)df["right"] = df.rolling(3, closed="right").x.sum()  # defaultdf["both"] = df.rolling(3, closed="both").x.sum()df["left"] = df.rolling(3, closed="left").x.sum()df["neither"] = df.rolling(3, closed="neither").x.sum()

以时间为移动窗口的操作结果如下,可以看出在边缘值计算方式:

            x  right  both  left  neither
2020-01-01  0    0.0   0.0   NaN      NaN
2020-01-02  1    1.0   1.0   0.0      0.0
2020-01-03  2    3.0   3.0   1.0      1.0
2020-01-04  3    6.0   6.0   3.0      3.0
2020-01-05  4    9.0  10.0   6.0      5.0
2020-01-06  5   12.0  14.0   9.0      7.0
2020-01-07  6   15.0  18.0  12.0      9.0
2020-01-08  7   18.0  22.0  15.0     11.0
2020-01-09  8   21.0  26.0  18.0     13.0
2020-01-10  9   24.0  30.0  21.0     15.0

为了更好理解该参数的作用,以上述的序列x为例,当3D滑动窗口时,截断如下子序列:

[1, 2, 3, 4 ]

closed right : 2 + 3 + 4 = 9 ( 也就是左开,右闭,其中1 不纳入计算)

closed left : 1 + 2 + 3 = 6 (也就是左闭,右开,其中 4 不纳入计算)

closed both : 1 + 2 + 3 + 4 = 10 (也就是左闭,右闭,1,4 都纳入计算)

closed neither : 2 + 3 = 5 (也就是左开,右开,1, 4都不纳入计算)

在这里插入图片描述

以上代码只是一个简单示例,示例代码中的表达式可以根据实际问题进行修改。

后面介绍下其他的展示形式。

觉得有用 收藏 收藏 收藏

点个赞 点个赞 点个赞

End

GPT专栏文章:

GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案

GPT实战系列-LangChain + ChatGLM3构建天气查询助手

大模型查询工具助手之股票免费查询接口

GPT实战系列-简单聊聊LangChain

GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)

GPT实战系列-ChatGLM2模型的微调训练参数解读

GPT实战系列-如何用自己数据微调ChatGLM2模型训练

GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案

GPT实战系列-Baichuan2本地化部署实战方案

GPT实战系列-Baichuan2等大模型的计算精度与量化

GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF

GPT实战系列-探究GPT等大模型的文本生成-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/283748.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【DataWhale】灵境Agent开发——低代码创建AI智能体

灵境Agent开发——低代码创建AI智能体 3 灵境 Agent 低代码开发 ​ 低代码模式支持开发者通过编排工作流的方式快速构建智能体,您可以通过拖拽和组合模型、提示词、代码等模块,实现准确的、复杂的业务流程。 ​ 个人体验下来,目前这个低代…

【Entity Framework】 EF中DbContext类详解

【Entity Framework】 EF中DbContext类详解 一、概述 DbContext类是实体框架的重要组成部分。它是应用域或实例类与数据库交互的桥梁。 从上图可以看出DbContext是负责与数据交互作为对象的主要类。DbContext负责以下活动: EntitySet:DbContext包含…

【linux】CentOS查看系统信息

一、查看版本号 在CentOS中,可以通过多种方法来查看版本号。以下是几种常用的方法: 使用cat命令查看/etc/centos-release文件: CentOS的版本信息存储在/etc/centos-release文件中。可以使用cat命令来显示该文件的内容,从而获得C…

鸿蒙ArkTS实战开发-Native XComponent组件的使用

介绍 本篇Codelab主要介绍如何使用XComponent组件调用NAPI来创建EGL/GLES环境,实现在主页面绘制一个正方形,并可以改变正方形的颜色。本篇CodeLab使用Native C模板创建。 如图所示,点击绘制矩形按钮,XComponent组件绘制区域中渲…

递归和递推的区别

目录 1、递推 2、递归 3、结言 递归 递推 1、递推 递推就是说从初值出发后一直运算到所需的结果。 ——从已知到未知。(从小到大) 举一个简单的例子: 每天能学习一个小时的编程,那么一个月之后可以学到三十小时的编程知识。…

同义词的作用

oracle从入门到总裁:​​​​​​https://blog.csdn.net/weixin_67859959/article/details/135209645 同义词 同义词本质上属于近义词的概念,它是表、索引、视图等模式对象的一个别名 通过为模式对象创建同义词,可以隐藏对象的实际名称和所有者信息&a…

Linux安装Nacos

安装前必要准备 准备Java环境 ,8以上的版本,mysql(集群相关信息),nginx(进行代理) 安装Nacos 首先我们要有一个nacos的包,我们可以在线下载,也可以提前下载好&#xf…

【爬取网易财经文章】

引言 在信息爆炸的时代,获取实时的财经资讯对于投资者和金融从业者来说至关重要。然而,手动浏览网页收集财经文章耗时费力,为了解决这一问题,本文将介绍如何使用Python编写一个爬虫程序来自动爬取网易财经下关于财经的文章 1. 爬…

【史上最全面arduino esp32教程】I2C接口LCD1602的使用

文章目录 前言一、安装驱动库二、LCD1602的各种操作2.1 点亮LCD16022.2 LCD1602其他函数清除显示屏上的所有字符将光标位置移动到显示屏的起始位置关闭显示屏,不会显示任何字符打开显示屏,开始显示字符关闭光标闪烁打开光标闪烁,使光标呈现闪…

踩了一天Prophet的fbprophet坑

pip怎么安装Prophet 安装了这个不行,要安装fbprophet 然后安装不起 哦豁 anaconda虚拟环境安装好将其导入pycharm from fbprophet import Prophet 然后不报错了,很稀奇对吧,不报错了 但是运行还是给你显示 没有fbprophet 绝望了,找人吧 通过官方网站安装最新版Prophet,但是…

洛谷_P1873 [COCI 2011/2012 #5] EKO / 砍树_python写法

P1873 [COCI 2011/2012 #5] EKO / 砍树 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) n, m map(int,input().split())data list(map(int,input().split())) h 0 def check(mid):h 0for i in data:if i>mid:h (i-mid)if h < m:return Trueelse:return Falsel 0 r …

游戏反云手机检测方案

游戏风险环境&#xff0c;是指独立于原有设备或破坏设备原有系统的环境。常见的游戏风险环境有&#xff1a;云手机、虚拟机、虚拟框架、iOS越狱、安卓设备root等。 这类风险环境可以为游戏外挂、破解提供所需的高级别设备权限&#xff0c;当游戏处于这些风险环境下&#xff0c…

【保姆级】前端使用node.js基础教程

文章目录 安装和版本管理&#xff1a;npm 命令&#xff08;Node 包管理器&#xff09;&#xff1a;运行 Node.js 脚本&#xff1a;调试和开发工具&#xff1a;其他常用命令&#xff1a;模块管理&#xff1a;包管理&#xff1a;调试工具&#xff1a;异步编程和包管理&#xff1a…

python的O2O生鲜食品订购flask-django-nodejs-php

用户只能通过一些类似软件进行查看生鲜超市&#xff0c;这样的管理方式仍然是比较机械传统的&#xff0c;本文通过对市面上常见的线上管理系统与现实生活中结合问题的讨论&#xff0c;从一个微信小程序的O2O生鲜食品订购角度进行需求分析&#xff0c;提供一些新的思路&#xff…

使用Lerna搭建业务组件库

Lerna基本概念 Lerna 是一个用来优化托管在 git\npm 上的多 package 代码库的工作流的一个管理工具,可以让你在主项目下管理多个子项目&#xff0c;从而解决了多个包互相依赖&#xff0c;且发布时需要手动维护多个包的问题。 主要功能&#xff1a; 为单个包或多个包运行命令 …

基于Gabor滤波器的指纹图像识别,Matlab实现

博主简介&#xff1a; 专注、专一于Matlab图像处理学习、交流&#xff0c;matlab图像代码代做/项目合作可以联系&#xff08;QQ:3249726188&#xff09; 个人主页&#xff1a;Matlab_ImagePro-CSDN博客 原则&#xff1a;代码均由本人编写完成&#xff0c;非中介&#xff0c;提供…

vben admin路由跳转拿不到param参数问题

vben admin路由跳转拿不到param参数问题 问题原因&#xff1a; 也就是说&#xff0c;从Vue Router的2022-8-22 这次更新后&#xff0c;我们使用上面的方式在新页面无法获取&#xff1a; vue也给我们提出了解决方案&#xff1a; ​ 1.使用 query 的方式传参 ​ 2.将参数放…

阿里云服务器租用一年多少钱?2024年最新阿里云租用价格

2024年阿里云服务器租用费用&#xff0c;云服务器ECS经济型e实例2核2G、3M固定带宽99元一年&#xff0c;轻量应用服务器2核2G3M带宽轻量服务器一年61元&#xff0c;ECS u1服务器2核4G5M固定带宽199元一年&#xff0c;2核4G4M带宽轻量服务器一年165元12个月&#xff0c;2核4G服务…

C# 对App.config、Web.config的appSettings节点数据进行加密

appSettings加密原因&#xff0c;就是因为容易暴露服务器账号和密码&#xff0c;而且客户也不允许 使用ASP.NET提供的命令工具aspnet_regiis来创建加密命令&#xff1b;aspnet_regiis是提供了直接对配置文件加密的功能的&#xff1b;并且使用aspnet_regiis加密的配置节点在读取…

Warning logs 2024-03-23

给旧的笔记本安装ubuntu系统&#xff0c;并实现ssh远程连接 1、下载ubuntu系统 ubuntu下载链接 选择带桌面版本 2、准备U盘 3、使用UltraISO制作启动盘 破解UltraISO软件 输入 注册名&#xff1a;王涛 注册码&#xff1a;7C81-1689-4046-626F 使用UltraISO&#xff0c…