【阅读论文】When Large Language Models Meet Vector Databases: A Survey

在这里插入图片描述
摘要
本调查探讨了大型语言模型(LLM)和向量数据库(VecDB)之间的协同潜力,这是一个新兴但迅速发展的研究领域。随着LLM的广泛应用,出现了许多挑战,包括产生虚构内容、知识过时、商业应用成本高昂和内存问题。VecDB作为一种有效的解决方案,通过提供存储、检索和管理LLM操作中固有的高维向量表示的方法,成为解决这些问题的有力工具。通过这篇细致入微的综述,我们阐明了LLM和VecDB的基本原理,并对它们的整合对增强LLM功能的影响进行了批判性分析。这个讨论还延伸到对该领域未来潜在发展的探讨,旨在促进进一步研究,以优化LLM和VecDB的融合,实现先进的数据处理和知识提取能力。
文章结构
请添加图片描述
术语解释:
LLMs:
Large Language Models(大型语言模型)是指一类深度学习模型,它们经过大规模训练,能够理解和生成高质量的自然语言文本。例如,GPT-3、BERT、阿里云的通义千问等都是LLMs的例子。这些模型通过学习大量文本数据集中的统计规律,能够用于各种自然语言处理任务,包括但不限于问答、文本生成、文本总结、语义分析等。

VecDB 或 Vector Database
向量数据库是一种新型数据库,主要用于存储和检索高维向量数据,特别是在自然语言处理和计算机视觉领域中,词、短语或图像特征常被表示为稠密或稀疏向量。这类数据库特别适合于检索相似性搜索、近邻搜索等场景,比如在大语言模型中结合检索增强生成(RAG)技术时,向量数据库可用于高效地查找与输入相关的信息片段。

RAG:
Retrieval-Augmented Generation(检索增强生成)是一种结合了信息检索与神经网络生成技术的方法。在NLP领域中,RAG模型会在生成文本响应之前,先从一个大型知识库中检索相关信息,并将检索结果与待生成文本的上下文相结合,从而提高模型生成的准确性和一致性。

VDBMS 或 Vector-based Database Management System
向量数据库管理系统是一种特殊的数据库管理系统,它专门针对向量数据进行设计,支持高效的存储、索引和检索操作。在AI和NLP应用中,向量数据库管理系统可能用于存储诸如词嵌入、句子向量等数据,使得复杂的向量化查询变得快速且可行。虽然没有明确提及“VDBMS”与上述LLMs和RAG技术的直接关联,但可以设想,在实现RAG这样的系统时,可能会利用VDBMS的技术来提升检索效率。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/284459.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【算法与数据结构】 C语言实现单链表队列详解

文章目录 📝队列🌠 数据结构设计🌉初始化队列函数 🌠销毁队列函数🌉入队函数 🌠出队函数🌉获取队首元素函数 🌠获取队尾元素函数🌉 判断队列是否为空函数🌉获…

如何让uni-app开发的H5页面顶部原生标题和小程序的顶部标题不一致?

如何让标题1和标题2不一样&#xff1f; 修改根目录下的App.vue&#xff08;核心代码如下&#xff09; <script>export default {onLaunch() {// 监听各种跳转----------------------------------------[navigateTo, redirectTo, reLaunch, switchTab, navigateBack, ].…

Leetcode 226. 翻转二叉树

心路历程&#xff1a; 翻转一瞬间没什么思路&#xff0c;其实就是挨个把每个结点的左右子树都翻转了。主要不要按照左右子树去思考&#xff0c;要按照结点去思考。 翻转既可以从上到下翻转&#xff08;前序遍历&#xff09;&#xff0c;也可以从下到上翻转&#xff08;后序遍历…

等保测评-Windows服务器

安全计算环境 身份鉴别 a)应对登录的用户进行身份标识和鉴别&#xff0c;身份标识具有唯一性&#xff0c;身份鉴别信息具有复杂度要求并定期更换 winr //运行 secpol.msc //本地安全策略&#xff0c;点击账户策略中的密码策略 注意修改的时候确保当前密码是满足条件的 b)应…

应急响应-Linux(1)

应急响应-Linux(1) 黑客的IP地址 思路&#xff1a; 一般系统中马之后会有进程连接黑客的主机&#xff0c;可以使用netstat -anpt查看下当前进程的连接&#xff0c;此处查看到没有后 &#xff0c;可以从系统服务开始查找&#xff0c;系统的服务日志一般都会保存相关访问信息&…

idea 没有代码提示解决方法

itellij idea 没有代码提示解决方法 今天写代码发现没有代码提示了&#xff0c;很难受。 直接上解决方法 设置 File-Settings-Editor-General-Code Completion&#xff1a;勾选Show suggestrions as you type 我的是这个问题&#xff0c;勾选上就ok了 取消节能模式 如果…

智慧公园:AI智能分析网关V4城市公园视频智能监管方案

一、背景分析 随着天气渐渐转暖&#xff0c;城市公园的花卉也逐渐盛开&#xff0c;春暖花开时节&#xff0c;前往公园赏花游玩的城市居民也渐渐多起来&#xff0c;因此安全问题也成为相关监管部门的重要管理任务之一。随着科技的不断进步&#xff0c;智能监控技术已经成为现代…

WPS制作甘特图

“ 甘特图&#xff08;Gantt chart&#xff09;又称为横道图、条状图&#xff08;Bar chart&#xff09;&#xff0c;通过条状图来显示项目、进度和其他时间相关的系统进展的内在关系随着时间进展的情况。” 设置基础样式 设置行高 设置宽度 准备基础数据 计算持续时间 …

.NET Core 服务实现监控可观测性最佳实践

前言 本次实践主要是介绍 .Net Core 服务通过无侵入的方式接入观测云进行全面的可观测。 环境信息 系统环境&#xff1a;Kubernetes编程语言&#xff1a;.NET Core ≥ 2.1日志框架&#xff1a;Serilog探针类型&#xff1a;ddtrace 接入方案 准备工作 DataKit 部署 DataK…

【MySQL】MVCC多版本并发控制

MVCC&#xff08;Multi-Version Concurrency Control&#xff09; 多版本并发控制&#xff0c;用于解决数据库并发访问中&#xff0c;数据一致性问题。它通过在读写操作期间保存多个数据版本&#xff0c;以提供并发事务间的隔离性&#xff0c;从而避免了传统的锁机制所带来的资…

2024-03-23 问AI: 介绍一下深度学习中的ReLU函数

文心一言 ReLU&#xff08;Rectified Linear Unit&#xff09;函数是深度学习领域中常用的一种激活函数。它具有简单、计算高效且在某些情况下能有效缓解梯度消失问题等优点&#xff0c;因此在神经网络中得到了广泛的应用。 ReLU函数的定义非常简单&#xff0c;其数学表达式为…

MapReduce学习问题记录

1、如何跳过对某行数据的处理 第一行数据是字段名不需要处理&#xff0c;我们知道第一行偏移量是0&#xff08;行记录的时候是从数组首地址开始&#xff0c;到了行标识符进行一次计数&#xff0c;这个计数就是行偏移量&#xff0c;从0开始&#xff09;&#xff0c;我们根据偏移…

1+x中级题目练习复盘(八)

SQL 语句中进行 group by 分组时&#xff0c;可以不写 where 子句 在使用 select 语句进行查询分组时&#xff0c;如果希望去掉不满足条件的分组&#xff0c;使用 having 子句File 类的 isDirectory() 方法可以判断文件是否为目录 在使用 select 语句进行查询分组时&#xff0…

基于Matlab的眼底图像血管分割,Matlab实现

博主简介&#xff1a; 专注、专一于Matlab图像处理学习、交流&#xff0c;matlab图像代码代做/项目合作可以联系&#xff08;QQ:3249726188&#xff09; 个人主页&#xff1a;Matlab_ImagePro-CSDN博客 原则&#xff1a;代码均由本人编写完成&#xff0c;非中介&#xff0c;提供…

qt5-入门-国际化

参考&#xff1a; Qt 国际化(上)_w3cschool https://www.w3cschool.cn/learnroadqt/fwkx1j4j.html QT5实现语言国际化&#xff08;中英文界面动态切换&#xff0c;超详细&#xff09;_qt qevent::languagechange-CSDN博客 https://blog.csdn.net/m0_49047167/article/details/…

奇舞周刊第523期:来自 rust 生态的强烈冲击?谈谈 Leptos 在语法设计上的精妙之处...

奇舞推荐 ■ ■ ■ 来自 rust 生态的强烈冲击&#xff1f;谈谈 Leptos 在语法设计上的精妙之处 过去很长一段时间&#xff0c;前端框架们都在往响应式的方向发展。同时又由于 React hooks 的深远影响&#xff0c;函数式 响应式成为了不少前端心中最理想的前端框架模样。Solid …

从JVM的退出机制分析Java程序的优雅关闭退出

前言 Java程序启动从main函数开始启动&#xff0c;是程序入口和主线程&#xff0c;但程序会在什么时候结束&#xff1f;为什么有的Java程序在启动后很快就结束了&#xff0c;比如HelloWorld程序&#xff0c;有的程序却能一直在运行&#xff0c;比如Tomcat启动后就一直保持进程…

Excel数字乱码怎么回事 Excel数字乱码怎么调回来

在日常工作中&#xff0c;Excel是我们最常使用的数据处理软件之一&#xff0c;它强大的功能使得数据处理变得既简单又高效。然而&#xff0c;用户在使用Excel时偶尔会遇到数字显示为乱码的问题&#xff0c;这不仅影响了数据的阅读&#xff0c;也大大降低了工作效率。那么&#…

RIPGeo代码理解(六)main.py(运行模型进行训练和测试)

​代码链接:RIPGeo代码实现 ├── preprocess.py # 预处理数据集并为模型运行执行IP聚类 ├── main.py # 运行模型进行训练和测试 ├── test.py #加载检查点,然后测试 一、导入各种模块和数据库 import torch.nnfrom lib.utils import * import argparse i…

数学算法(算法竞赛、蓝桥杯)--最大公约数,欧几里得算法

1、B站视频链接&#xff1a;G05 最大公约数 欧几里得算法_哔哩哔哩_bilibili 题目链接&#xff1a;[NOIP2001 普及组] 最大公约数和最小公倍数问题 - 洛谷 #include <bits/stdc.h> using namespace std; typedef long long LL; LL x,y,ans;LL gcd(LL a,LL b){return b0?…