人工智能前沿——「全域全知全能」人类新宇宙ChatGPT


🚀🚀🚀OpenAI聊天机器人ChatGPT——「全域全知全能」人类全宇宙大爆炸!!🔥🔥🔥


一、什么是ChatGPT?🍀🍀

ChatGPT是生成型预训练变换模型(Chat Generative Pre-trained Transformer)的缩写,是一种语言模型。而OpenAI所提出的这一系列的模型,可以执行非常复杂的任务,如回复问题、生成文章和程序代码,或者翻译文章内容等。而GPT中的Transformer是指由Google Brain所推出的解码器(decoder),是用来处理输入的自然语言以处理翻译、摘要等。ChatGPT是OpenAI开发的一种创新AI模型,利用强大的GPT-3系列,并通过人类反馈与强化学习相一致。ChatGPT是一个聊天机器人,它为对话带来了一个新的互动和参与水平,对问题提供了深刻和发人深省的回答。

但ChatGPT不仅仅是个聊天机器人,而是上知天文下知地理、可以针对使用者问题给予相应的长篇回复;问答解惑、写程式和debug,甚至撰写论文、剧本小说诗歌等等,都难不倒它,只是有时还是会出现令人啼笑皆非的答案,但都还编得有模有样、令人惊艳。

ChatGPT自2022年11月30日开放公众使用以来,已经吸引超过100万人使用,社群媒体也涌现了大量用户的测试截图,主题广泛,个个都在测试人工智慧的极限。

总之,ChatGPT是一个非常强大和多功能的人工智能模型,能够提供有洞察力和吸引人的对话,并以多种不同的方式推进人工智能研究领域。OpenAI创建ChatGPT的努力无疑是一个令人印象深刻的壮举,为AI的未来提供了不可思议的潜力。

二、ChatGPT的作者是谁?🍀🍀

ChatGPT由马斯克(Elon Musk)参与创立的独立研究机构OpenAI基金会所研发,初衷是为了确保AI最终不会消灭人类。

三、ChatGPT是如何训练的?🍀🍀


📚📚ChatGPT的训练过程分为以下三个阶段👇👇


✨✨第一阶段:

冷启动阶段的监督策略模型。靠GPT 3.5本身,尽管它很强,但是它很难理解人类不同类型指令中蕴含的不同意图,也很难判断生成内容是否是高质量的结果。为了让GPT 3.5初步具备理解指令中蕴含的意图,首先会从测试用户提交的prompt(就是指令或问题)中随机抽取一批,靠专业的标注人员,给出指定prompt的高质量答案,然后用这些人工标注好的<prompt,answer>数据来Fine-tune GPT 3.5模型。经过这个过程,我们可以认为GPT 3.5初步具备了理解人类prompt中所包含意图,并根据这个意图给出相对高质量回答的能力,但是很明显,仅仅这样做是不够的。

✨✨第二阶段:

 训练回报模型(Reward Model,RM)。这个阶段的主要目的是通过人工标注训练数据,来训练回报模型。具体而言,随机抽样一批用户提交的prompt(大部分和第一阶段的相同),使用第一阶段Fine-tune好的冷启动模型,对于每个prompt,由冷启动模型生成K个不同的回答,于是模型产生出了<prompt,answer1>,<prompt,answer2>….<prompt,answerK>数据。之后,标注人员对K个结果按照很多标准(上面提到的相关性、富含信息性、有害信息等诸多标准)综合考虑进行排序,给出K个结果的排名顺序,这就是此阶段人工标注的数据。

接下来,我们准备利用这个排序结果数据来训练回报模型,采取的训练模式其实就是平常经常用到的pair-wise learning to rank。对于K个排序结果,两两组合,形成个训练数据对,ChatGPT采取pair-wise loss来训练Reward Model。RM模型接受一个输入<prompt,answer>,给出评价回答质量高低的回报分数Score。对于一对训练数据<answer1,answer2>,我们假设人工排序中answer1排在answer2前面,那么Loss函数则鼓励RM模型对<prompt,answer1>的打分要比<prompt,answer2>的打分要高。

归纳下:在这个阶段里,首先由冷启动后的监督策略模型为每个prompt产生K个结果,人工根据结果质量由高到低排序,以此作为训练数据,通过pair-wise learning to rank模式来训练回报模型。对于学好的RM模型来说,输入<prompt,answer>,输出结果的质量得分,得分越高说明产生的回答质量越高。

✨✨第三阶段:

采用强化学习来增强预训练模型的能力。本阶段无需人工标注数据,而是利用上一阶段学好的RM模型,靠RM打分结果来更新预训练模型参数。具体而言,首先,从用户提交的prompt里随机采样一批新的命令(指的是和第一第二阶段不同的新的prompt,这个其实是很重要的,对于提升LLM模型理解instruct指令的泛化能力很有帮助),且由冷启动模型来初始化PPO模型的参数。然后,对于随机抽取的prompt,使用PPO模型生成回答answer, 并用上一阶段训练好的RM模型给出answer质量评估的回报分数score,这个回报分数就是RM赋予给整个回答(由单词序列构成)的整体reward。有了单词序列的最终回报,就可以把每个单词看作一个时间步,把reward由后往前依次传递,由此产生的策略梯度可以更新PPO模型参数。这是标准的强化学习过程,目的是训练LLM产生高reward的答案,也即是产生符合RM标准的高质量回答。

如果我们不断重复第二和第三阶段,很明显,每一轮迭代都使得LLM模型能力越来越强。因为第二阶段通过人工标注数据来增强RM模型的能力,而第三阶段,经过增强的RM模型对新prompt产生的回答打分会更准,并利用强化学习来鼓励LLM模型学习新的高质量内容,这起到了类似利用伪标签扩充高质量训练数据的作用,于是LLM模型进一步得到增强。显然,第二阶段和第三阶段有相互促进的作用,这是为何不断迭代会有持续增强效果的原因。

尽管如此,我觉得第三阶段采用强化学习策略,未必是ChatGPT模型效果特别好的主要原因。假设第三阶段不采用强化学习,换成如下方法:类似第二阶段的做法,对于一个新的prompt,冷启动模型可以产生k个回答,由RM模型分别打分,我们选择得分最高的回答,构成新的训练数据<prompt,answer>,去fine-tune LLM模型。假设换成这种模式,我相信起到的作用可能跟强化学习比,虽然没那么精巧,但是效果也未必一定就差很多。第三阶段无论采取哪种技术模式,本质上很可能都是利用第二阶段学会的RM,起到了扩充LLM模型高质量训练数据的作用。

以上是ChatGPT的训练流程。

四、ChatGPT的演变历程🍀🍀

1. GPT-1

就是第一代GPT模型,于2018年6月诞生时,就已经是个强大的语言理解模型。从判断两个句子间的语意与关系、文本资料分类、问答与常识推理都难不倒,只是并非好的对话式AI模型,训练参数也远低于后续模型。

2. GPT-2

2019年2月OpenAI又推出了由GPT-1演变而来的GPT-2,但主要改变只有使用了更多参数与数据集,参数量达15亿(GPT-1仅有1.17亿),而学习目标改成了「无特定任务训练」。这证明了,大幅增加的参数和资料可以让GPT-2比起GPT-1更上一层楼,虽然有些任务的表现不比随机的好,但在生成短文和编故事等方面都有了一定的突破。

3. GPT-3/GPT-3.5

2020年GPT-3也受简单粗暴地用钱堆出了更多的运算资源,延续过去GPT类的单向语言模型的训练方式,只是将模型增大到1750亿参数。GPT-3在自然语言处理领域已经取得了重大的突破,成为了当时最大、最强大的自然语言生成模型,从机器翻译到文章总结输出,都有着非常出色的表现。

只是,2020年因为疫情严峻所致,人们对于人工智慧领域的突破并没有足够的关注。而且,比起ChatGPT,GPT-3并没有办法进行自然的对话,只能处理单向的任务,因此也只有少数开发者有兴趣。

直到2022年11月底,OpenAI才发布了「GPT-3.5」的更新,主打对话模式,甚至可以承认错误、且拒绝不恰当的请求──这就是支持ChatGPT背后的模型,其更接近人类对话与思考方式的特点也吸引了全球的目光。

4. GPT-4

距上次GPT-3.5的更新不久,2023年3月14日,OpenAI又抛出GPT-4,此次除了正确度高出40%、以整理和搜寻网络上的资讯为主,还可以支援视觉输入、图像辨识,并懂得「看图说故事」!不过GPT-4没有再砸下重金、狂堆训练参数,而是把研发的重点将放在提升利用现有数据的能力上。


🚀🏆🍀【算法创新&算法训练&论文投稿】相关链接👇👇👇


【YOLO创新算法尝新系列】

🏂 美团出品 | YOLOv6 v3.0 is Coming(超越YOLOv7、v8)

🏂 官方正品 | Ultralytics YOLOv8算法来啦(尖端SOTA模型)

🏂 改进YOLOv5/YOLOv7——魔改YOLOv5/YOLOv7提升检测精度(涨点必备)

——————————————🌴【重磅干货来袭】🎄——————————————

🚀一、主干网络改进(持续更新中)🎄🎈

1.目标检测算法——YOLOv5/YOLOv7改进之结合ConvNeXt结构(纯卷积|超越Swin)

2.目标检测算法——YOLOv5/YOLOv7改进之结合MobileOne结构(高性能骨干|仅需1ms)

3.目标检测算法——YOLOv5/YOLOv7改进之结合Swin Transformer V2(涨点神器)

4.目标检测算法——YOLOv5/YOLOv7改进结合BotNet(Transformer)

5.目标检测算法——YOLOv5/YOLOv7改进之GSConv+Slim Neck(优化成本)

6.目标检测算法——YOLOv5/YOLOv7改进结合新神经网络算子Involution(CVPR 2021)

7.目标检测算法——YOLOv7改进|增加小目标检测层

8.目标检测算法——YOLOv5改进|增加小目标检测层

9.目标检测算法——YOLOv5/v7改进之结合最强视觉识别模块CotNet(Transformer)

10.目标检测算法——YOLOv5/v7/v8改进结合即插即用的动态卷积ODConv(小目标涨点神器)

🌴 持续更新中……

🚀二、轻量化网络(持续更新中)🎄🎈

1.目标检测算法——YOLOv5/YOLOv7改进之结合​RepVGG(速度飙升)

2.目标检测算法——YOLOv5/YOLOv7改进之结合​PP-LCNet(轻量级CPU网络)

3.目标检测算法——YOLOv5/YOLOv7改进之结合轻量化网络MobileNetV3(降参提速)

4.目标检测算法——YOLOv5/YOLOv7改进|结合轻量型网络ShuffleNetV2

5.目标检测算法——YOLOv5/YOLOv7改进结合轻量型Ghost模块

🌴 持续更新中……

🚀三、注意力机制(持续更新中)🎄🎈

1.目标检测算法——YOLOv5改进之结合CBAM注意力机制

2.目标检测算法——YOLOv7改进之结合CBAM注意力机制

3.目标检测算法——YOLOv5/YOLOv7之结合CA注意力机制

4.目标检测算法——YOLOv5/YOLOv7改进之结合ECA注意力机制

5.目标检测算法——YOLOv5/YOLOv7改进之结合NAMAttention(提升涨点)

6.目标检测算法——YOLOv5/YOLOv7改进之结合GAMAttention

7.目标检测算法——YOLOv5/YOLOv7改进之结合无参注意力SimAM(涨点神器)

8.目标检测算法——YOLOv5/YOLOv7改进之结合Criss-Cross Attention

9.​目标检测算法——YOLOv5/YOLOv7改进之结合​SOCA(单幅图像超分辨率)

🌴 持续更新中……

🚀四、检测头部改进(持续更新中)🎄🎈

1.魔改YOLOv5/YOLOv7高阶版——改进之结合解耦头Decoupled_Detect

2.目标检测算法——YOLOv5/YOLOv7改进结合涨点Trick之ASFF(自适应空间特征融合)

🌴 持续更新中……

🚀五、空间金字塔池化(持续更新中)🎄🎈

1.目标检测算法——YOLOv5/YOLOv7改进之结合​ASPP(空洞空间卷积池化金字塔)

2.目标检测算法——YOLOv5/YOLOv7改进之结合特征提取网络RFBNet(涨点明显)

🌴 持续更新中……

🚀六、损失函数及NMS改进(持续更新中)🎄🎈

1.目标检测算法——YOLOv5/YOLOv7改进|将IOU Loss替换为EIOU Loss

2.目标检测算法——助力涨点 | YOLOv5改进结合Alpha-IoU

3.目标检测算法——YOLOv5/YOLOv7改进之结合SIoU

4.目标检测算法——YOLOv5将NMS替换为DIoU-NMS

5.目标检测算法——YOLOv5/v7/v8改进结合涨点Trick之Wise-IoU(超越CIOU/SIOU)

🌴 持续更新中……

🚀七、其他创新改进项目(持续更新中)🎄🎈

1.手把手教你搭建属于自己的PyQt5-YOLOv5目标检测平台(保姆级教程)

2.YOLO算法改进之结合GradCAM可视化热力图(附详细教程)

3.目标检测算法——YOLOv5/YOLOv7改进之结合SPD-Conv(低分辨率图像和小目标涨点明显)

4.目标检测算法——YOLOv5/YOLOv7改进之更换FReLU激活函数

5.目标检测算法——YOLOv5/YOLOv7改进之结合BiFPN

🌴 持续更新中……

🚀八、算法训练相关项目(持续更新中)🎄🎈

1.目标检测算法——YOLOv7训练自己的数据集(保姆级教程)

2.人工智能前沿——玩转OpenAI语音机器人ChatGPT(中文版)

3.深度学习之语义分割算法(入门学习)

4.知识经验分享——YOLOv5-6.0训练出错及解决方法(RuntimeError)

5.目标检测算法——将xml格式转换为YOLOv5格式txt

6.目标检测算法——YOLOv5/YOLOv7如何改变bbox检测框的粗细大小

7.人工智能前沿——6款AI绘画生成工具

8.YOLOv5结合人体姿态估计

9.超越YOLOv5,0.7M超轻量,又好又快(PP-YOLOE&PP-PicoDet)

10.目标检测算法——收藏|小目标检测的定义(一)

11.目标检测算法——收藏|小目标检测难点分析(二)

12.目标检测算法——收藏|小目标检测解决方案(三)

13.人工智能前沿——「全域全知全能」新宇宙ChatGPT

14.人工智能前沿——「小海带」超全视觉注意力机制资源分享(附下载链接)

🌴 持续更新中……

🚀九、数据资源相关项目(持续更新中)🎄🎈

1.目标检测算法——小目标检测相关数据集(附下载链接)

2.目标检测算法——3D公共数据集汇总(附下载链接)

3.目标检测算法——3D公共数据集汇总 2(附下载链接)

4.目标检测算法——行人检测&人群计数数据集汇总(附下载链接)

5.目标检测算法——遥感影像数据集资源汇总(附下载链接)

6.目标检测算法——自动驾驶开源数据集汇总(附下载链接)

7.目标检测算法——自动驾驶开源数据集汇总 2(附下载链接)

8.目标检测算法——图像分类开源数据集汇总(附下载链接)

9.目标检测算法——医学图像开源数据集汇总(附下载链接)

10.目标检测算法——工业缺陷数据集汇总1(附下载链接)

11.目标检测算法——工业缺陷数据集汇总2(附下载链接)

12.目标检测算法——垃圾分类数据集汇总(附下载链接)

13.目标检测算法——人脸识别数据集汇总(附下载链接)

14.目标检测算法——安全帽识别数据集(附下载链接)

15.目标检测算法——人体姿态估计数据集汇总(附下载链接)

16.目标检测算法——人体姿态估计数据集汇总 2(附下载链接)

17.目标检测算法——车辆牌照识别数据集汇总(附下载链接)

18.目标检测算法——车辆牌照识别数据集汇总 2(附下载链接)

19.收藏 | 机器学习公共数据集集锦(附下载链接)

20.目标检测算法——图像分割数据集汇总(附下载链接)

21.目标检测算法——图像分割数据集汇总 2(附下载链接)

22.收藏 | 自然语言处理(NLP)数据集汇总(附下载链接)

23.自然语言处理(NLP)数据集汇总 2(附下载链接)

24.自然语言处理(NLP)数据集汇总 3(附下载链接)

25.自然语言处理(NLP)数据集汇总 4(附下载链接)

26.目标检测算法——关键点检测数据集汇总(附下载链接)

27.目标检测算法——图像去雾开源数据集汇总(速速收藏)

28.目标检测算法——图像去噪开源数据集汇总(速速收藏)

29.目标检测算法——农业作物开源数据集汇总(收藏)

🌴 持续更新中……

🚀十、论文投稿相关项目(持续更新中)🎄🎈

1.论文投稿指南——收藏|SCI论文投稿注意事项(提高命中率)

2.论文投稿指南——收藏|SCI论文怎么投?(Accepted)

3.论文投稿指南——收藏|SCI写作投稿发表全流程

4.论文投稿指南——收藏|如何选择SCI期刊(含选刊必备神器)

5.论文投稿指南——SCI选刊

6.论文投稿指南——SCI投稿各阶段邮件模板

7.人工智能前沿——深度学习热门领域(确定选题及研究方向)

8.人工智能前沿——2022年最流行的十大AI技术

9.人工智能前沿——未来AI技术的五大应用领域

10.人工智能前沿——无人自动驾驶技术

11.人工智能前沿——AI技术在医疗领域的应用

12.人工智能前沿——随需应变的未来大脑

13.目标检测算法——深度学习知识简要普及

14.目标检测算法——10种深度学习框架介绍

15.目标检测算法——为什么我选择PyTorch?

16.知识经验分享——超全激活函数解析(数学原理+优缺点)

17.知识经验分享——卷积神经网络(CNN)

18.海带软件分享——Office 2021全家桶安装教程(附报错解决方法)

19.海带软件分享——日常办公学习软件分享(收藏)

20.论文投稿指南——计算机视觉 (Computer Vision) 顶会归纳

21.论文投稿指南——中文核心期刊

22.论文投稿指南——计算机领域核心期刊

23.论文投稿指南——中文核心期刊推荐(计算机技术)

24.论文投稿指南——中文核心期刊推荐(计算机技术2)

25.论文投稿指南——中文核心期刊推荐(计算机技术3)

26.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/2856.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

还在用chatGPT聊天?《元宇宙2086》已开始用AIGC做漫画连载了!

ChatGPT 是由 OpenAI开发的一个人工智能聊天机器人程序&#xff0c;于 2022 年 11 月推出。该程序使用基于 GPT-3.5架构的大型语言模型并通过强化学习进行训练。 ChatGPT 目前仍以文字方式互动&#xff0c;而除了可以透过人类自然对话方式进行交互&#xff0c;还可以用于相对复…

ChatGPT与元宇宙营销场景结合是一种非常有效的解决方案

在当今的商业环境中&#xff0c;营销是至关重要的。然而&#xff0c;营销不仅仅是一个广告语或一个宣传活动&#xff0c;它需要更深入的思考和策略。 这是ChatGpt可以发挥其作用的地方。ChatGpt是一种强大的语言处理工具&#xff0c;它可以帮助您在元宇宙营销场景中实现语言处理…

ChatGPT引发全球狂潮,它会是下一个元宇宙吗

ChatGPT作为全新的人工智能&#xff08;AI&#xff09;语言模型&#xff0c;诞生于2022年11月30日&#xff0c;在上线两个月之后&#xff0c;ChatGPT便获得1亿月活用户。现在&#xff0c;其引发的狂潮席卷科技产业&#xff0c;围绕ChatGPT的技术军备竞赛正热火朝天&#xff0c;…

巴比特 | 元宇宙每日必读:ChatGPT抢走了元宇宙的风头?元宇宙中小公司称业务暂未受影响,投资人称仍然关注应用层的突破和创新...

摘要&#xff1a;元宇宙赛道真的进入低谷了吗&#xff1f;剁椒TMT对话多家元宇宙公司、行业投资人后发现&#xff0c;随着大厂在XR业务方面的调整&#xff0c;资本对硬件设备也变得更加谨慎。不过&#xff0c;尽管对元宇宙的悲观论调在行业中盛传&#xff0c;但是&#xff0c;中…

ChatGPT火爆,元宇宙“熄火”?别操之过急,也别敷衍了事

近期&#xff0c;在ChatGPT火爆的同时&#xff0c;元宇宙“遇冷”的消息引起关注。据科技圈流传&#xff0c;大量元宇宙聊天群一夜之间改名为ChatGPT聊天群。 ChatGPT火爆出圈导致元宇宙“熄火”&#xff0c;真的是这样吗&#xff1f;ChatGPT与元宇宙二者有怎样的底层逻辑关联&…

元宇宙虚火烧尽 日产“逆势”布局

风口总消散在新一轮的风口下。 席卷资本市场的ChatGPT令元宇宙显出明日黄花之态&#xff0c;当潮水退去&#xff0c;市场回归理性&#xff0c;身处元宇宙时代的玩家们已然走到了十字路口&#xff0c;汽车企业日产做出选择——逆势布局。 今年3月&#xff0c;日产创建汽车虚拟…

ChatGpt在元宇宙娱乐领域的应用能够带来哪些价值?

对于娱乐业来说&#xff0c;元宇宙能够带来无限的可能性&#xff0c;元宇宙公司广州华锐互动一直致力于元宇宙娱乐领域开发&#xff0c;而ChatGPT的热度持续攀升&#xff0c;我们也发现了ChatGPT在元宇宙娱乐领域可以用于许多不同的应用场景&#xff0c;包括&#xff1a; 1、聊…

飞熊观察:ChatGPT不是取代元宇宙,而是丰富元宇宙内容

随着ChatGPT近期火热&#xff0c;有人人为热点已经从元宇宙转换为ChatGPT了。他们有很多实例说明这种改变&#xff0c;如Meta全年亏损额达到137亿美元&#xff0c;疯传Meta正在准备新一轮裁员&#xff1b;如微软解散刚刚成立仅四个月的工业元宇宙团队等等。其实从笔者看来&…

【广州华锐互动】ChatGpt在元宇宙游戏领域有哪些应用场景?

游戏已经成为了许多人的娱乐方式。然而&#xff0c;如何提高游戏体验仍然是一个关键的问题。这里&#xff0c;我们介绍一种新型的技术&#xff1a;ChatGpt。 ChatGpt是一种基于自然语言处理的人工智能技术&#xff0c;可以帮助游戏开发人员制作出更加智能的游戏。它可以在元宇宙…

一分钟拥有ChatGPT!

一分钟拥有ChatGPT&#xff01; 1、打开Microsoft Edge&#xff1b; 2、选择“扩展”->“管理扩展”&#xff1b; 3、选择“获取Microsoft Edge扩展”&#xff1b; 4、在“最热门”中选择获取“WeTab-免费ChatGPT新标签页”。若“最热门”中无该插件&#xff0c;则可在搜…

ChatGPT注册找我

这里写自定义目录标题 欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题&#xff0c;有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants 创建一个自定义列表如何创建一个…

阿里版 ChatGPT 突然上线!

转自:纯洁的微笑 其实早本月初&#xff0c;就传出过不少阿里要推出类ChatGPT的消息。 前几天率先流出的天猫精灵“鸟鸟分鸟”脱口秀版GPT&#xff0c;就是基于大模型的“压缩版”&#xff0c;已经以其惊艳表现吸引了众目光。 如今“原版大菜”上桌&#xff0c;自然一点即着&a…

ChatGPT专业应用:生成Meta description

正文共 555 字&#xff0c;阅读大约需要 2 分钟 网站编辑/SEO投放必备技巧&#xff0c;您将在2分钟后获得以下超能力&#xff1a; 生成meta description Beezy评级 &#xff1a;B级 *经过简单的寻找&#xff0c; 大部分人能立刻掌握。主要节省时间。 推荐人 | Kim 编辑者 | L…

最新ChatGPT商业运营版网站源码+支持AI绘画+支持用户会员套餐+邀请分佣功能+支持后台一键更新+网站后台管理+永久更新!

最新ChatGPT商业运营版网站源码支持AI绘画支持用户会员套餐邀请分佣功能支持后台一键更新网站后台管理永久更新&#xff01; AI付费创作系统: 如果后续程序有新版&#xff0c;直接在后台一键更新即可&#xff01; 程序完美运行无BUG&#xff0c;独家开发&#xff0c;支持6种会员…

2023最新商业版ChatGPT网页版源码V3.9+支持用户付费/功能强大

正文: 3.9版本已经更新&#xff01; 安装教程: 搭建宝塔 解析域名 上传程序至根目录 配置数据库信息:lib/config.php 导入数据库 PHP选择:7.3 访问网页即可&#xff01; 配置APIKEY&#xff0c;登录网站后台自定义配置&#xff0c;不然网站无法使用&#xff01; 网站…

ChatGPT的评估指标有哪些?微调与上下文学习是否存在相似性?

NLP 分很多的任务&#xff0c;不同的任务有不同的指标来度量模型质量&#xff0c;比如AUC&#xff0c;Precision/Recall是分类模型的度量指标。 ChatGPT可以看作一个生成式语言模型&#xff0c;简单说就是给它输入一段文字&#xff0c;它会输出另一段文字&#xff0c;当然输出和…

火爆出圈ChatGPT——电商运营新姿态

近日&#xff0c;互联网掀起了一股ChatGPT热浪&#xff0c;它冲击着全球的互联网用户&#xff0c;将人工智能带入了全新的高度&#xff0c;ChatGPT是什么&#xff0c;它到底能够做什么&#xff1f;你是否已经洞悉这个先机了呢&#xff1f; ChatGPT是人工智能技术驱动的自然语言…

Chatgpt 实践经验分享

数据准备&#xff1a;ChatGPT 需要大量的训练数据来支撑模型的训练和优化&#xff0c;因此需要进行充分的数据准备。在数据准备方面&#xff0c;需要考虑数据的质量、覆盖范围以及数据的预处理方式等。模型训练&#xff1a;ChatGPT 使用端到端学习的方式训练模型&#xff0c;需…

2023最新ChatGPT商业源码+支持二开魔改/目前代码已全开源

正文: 最新ChatGPT商业运营版系统源码 全开源 站长亲测 测试环境&#xff1a;PHP7.4MySQL5.6 用是没问题的&#xff0c;支持暗黑模式&#xff0c;反应也是很快的&#xff0c;充值方面使用的是后台生成卡密方式&#xff0c;有能力的可以对接一下在线支付&#xff0c;这样…

Python+ChatGPT实战之进行游戏运营数据分析

文章目录 一、数据二、目标三、解决方案1. DAU2. 用户等级分布3. 付费率4. 收入情况5. 付费用户的ARPU 最近ChatGPT蛮火的&#xff0c;今天试着让ta写了一篇数据分析实战案例&#xff0c;大家来评价一下&#xff01; 一、数据 您的团队已经为您提供了一些游戏数据&#xff0c;…