Python 全栈体系【四阶】(二十)

第五章 深度学习

二、推荐系统

1. 推荐算法介绍

1.1 个性化推荐算法
  • 人口属性

  • 地理属性

  • 资产属性

  • 兴趣属性

1.2 推荐算法分支
  • 协同过滤推荐算法
  • 基于内容的推荐算法
  • 混合推荐算法
  • 流行度推荐算法
1.3 推荐算法

为推荐系统选择正确的推荐算法是非常重要的决定。目前为止,已经有许多推荐算法可供选择,但为你需要解决的特定问题选择一种特定的算法仍然很困难。每一种推荐算法都有其优点和缺点,当然也有其限制条件,在作出决定之前,你必须要一一考量。在实践中,你可能会测试几种算法,以发现哪一种最适合你的用户,测试中你也会直观地发现它们是什么以及它们的工作原理。

1.4 协同过滤算法

基于内存的协同过滤/基于邻域的协同过滤

  • 相似统计的方法得到具有相似兴趣爱好的邻居用户

基于模型的协同过滤

  • 先用历史数据得到一个模型,再用此模型进行预测。基于模型的推荐广泛使用的技术包括神经网络等学习技术、潜在语义检索 (latent seman2tic indexing)和贝叶斯网络 (bayesian networks)。
1.5 邻域的协同过滤

UCF 距离算法 ICF

欧几里得距离(Euclidean Distance)以及欧式距离的标准化(Standardized Euclidean Distance)

马哈拉诺比斯距离(Mahalanobis Distance)

曼哈顿距离(Manhattan Distance)

切比雪夫距离(Chebyshev Distance)

明可夫斯基距离(Minkowski Distance)

海明距离(Hamming distance)

1.6 ICF

请添加图片描述

1.7 UCF

请添加图片描述

1.8 邻域的协同过滤

UCF ICF 相似度

余弦相似度(Cosine Similarity)以及调整余弦相似度(Adjusted Cosine Similarity)

皮尔森相关系数(Pearson Correlation Coefficient)

Jaccard 相似系数(Jaccard Coefficient)

Tanimoto 系数(广义 Jaccard 相似系数)

对数似然相似度/对数似然相似率

互信息/信息增益,相对熵/KL 散度

信息检索–词频-逆文档频率(TF-IDF)

词对相似度–点间互信息

1.9 基于模型的协同过滤

用关联算法做协同过滤

用聚类算法做协同过滤

用分类算法做协同过滤

用回归算法做协同过滤

用矩阵分解做协同过滤

用神经网络做协同过滤

用图模型做协同过滤

用隐语义模型做协同过滤

1.10 关联规则

Apriori

  • Apriori 算法是常用的用于挖掘出数据关联规则的算法,它用来找出数据值中频繁出现的数据集合,找出这些集合的模式有助于我们做一些决策。比如在常见的超市购物数据集,或者电商的网购数据集中,如果我们找到了频繁出现的数据集,那么对于超市,我们可以优化产品的位置摆放,对于电商,我们可以优化商品所在的仓库位置,达到节约成本,增加经济效益的目的。

FPGROWTH

  • FpGrowth 算法通过构造一个树结构来压缩数据记录,使得挖掘频繁项集只需要扫描两次数据记录,而且该算法不需要生成候选集合,所以效率会比较高。

请添加图片描述
请添加图片描述

1.11 聚类

K-Means

  • K-Means 算法是无监督的聚类算法,它实现起来比较简单,聚类效果也不错,因此应用很广泛。K-Means 算法有大量的变体,本文就从最传统的 K-Means 算法讲起,在其基础上讲述 K-Means 的优化变体方法。包括初始化优化 K-Means++, 距离计算优化 elkan K- Means 算法和大数据情况下的优化 Mini Batch K-Means 算法。

BIRCH

  • BIRCH 的全称是利用层次方法的平衡迭代规约和聚类(Balanced Iterative Reducing and Clustering Using Hierarchies),名字实在是太长了,不过没关系,其实只要明白它是用层次方法来聚类和规约数据就可以了。

请添加图片描述

1.12 分类

逻辑回归原理

  • 如果我们根据用户评分的高低,将分数分成几段的话,则这个问题变成分类问题。比如最直接的,设置一份评分阈值,评分高于阈值的就是推荐,评分低于阈值就是不推荐,我们将问题变成了一个二分类问题。虽然分类问题的算法多如牛毛,但是目前使用最广泛的是逻辑回归。

朴素贝叶斯算法

请添加图片描述

1.13 矩阵分解

请添加图片描述

1.14 矩阵分解之隐语义

请添加图片描述
请添加图片描述

1.15 神经网络

2006 年,Hinton 在《Science》和相关期刊上发表了论文,首次提出了“深度信念网络”的概念。与传统的训练方式不同,“深度信念网络”有一个“预训练”(pre-training)的过程,这可以方便的让神经网络中的权值找到一个接近最优解的值,之后再使用“微调”(fine-tuning)技术来对整个网络进行优化训练。这两个技术的运用大幅度减少了训练多层神经网络的时间。他给多层神经网络相关的学习方法赋予了一个新名词–“深度学习”。

很快,深度学习在语音识别领域暂露头角。接着,2012 年,深度学习技术又在图像识别领域大展拳脚。Hinton 与他的学生在ImageNet 竞赛中,用多层的卷积神经网络成功地对包含一千类别的一百万张图片进行了训练,取得了分类错误率 15%的好成绩,这个成绩比第二名高了近 11 个百分点,充分证明了多层神经网络识别效果的优越性。
请添加图片描述

请添加图片描述

1.16 协同过滤优点
  • 实现快
  • 对商品和用户没有要求
  • 效果有保证
1.17 协同过滤缺点
  • 冷启动
  • 马太效应
  • 推荐解释模糊
1.18 工具

请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/287700.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

两区域二次调频风火机组,麻雀启发式算法改进simulink与matlab联合

区域1结果 区域2结果 红色曲线为优化后结果〔风火机组二次调频〕

【机器学习之---数学】统计学基础概念

every blog every motto: You can do more than you think. https://blog.csdn.net/weixin_39190382?typeblog 0. 前言 统计学基础 1. 频率派 频率学派(传统学派)认为样本信息来自总体,通过对样本信息的研究可以合理地推断和估计总体信息…

6、ChatGLM3-6B 部署实践

一、ChatGLM3-6B介绍与快速入门 ChatGLM3 是智谱AI和清华大学 KEG 实验室在2023年10月27日联合发布的新一代对话预训练模型。ChatGLM3-6B 是 ChatGLM3 系列中的开源模型,免费下载,免费的商业化使用。 该模型在保留了前两代模型对话流畅、部署门槛低等众多…

Python爬虫:爬虫基本概念、流程及https协议

本文目录: 一、爬虫的基本概念1.为什么要学习爬虫1.1 数据的来源1.2 爬取到的数据用途 2.什么是爬虫3. 爬虫的更多用途 二、爬虫的分类和爬虫的流程1.爬虫的分类2.爬虫的流程3.robots协议 三、爬虫http和https1.http和https的概念2.浏览器发送HTTP请求的过,2.1 http…

基于springboot+vue调用百度ai实现车牌号识别功能

百度车牌号识别官方文档 结果视频演示 后端代码 private String getCarNumber(String imagePath, int count) {// 请求urlString url "https://aip.baidubce.com/rest/2.0/ocr/v1/license_plate";try {byte[] imgData FileUtil.readFileByBytes(imagePath);Stri…

【Python进阶】探秘装饰器:揭开简洁与强大的神秘面纱

引言 在Python的世界里,有一种魔法般的高级特性——装饰器(Decorators),它就像一块块功能各异的积木,能够让我们的代码变得更加灵活、优雅且易于维护。今天,让我们一同走进装饰器的殿堂,探索其…

R语言随机抽取数据,并作两组数据间t检验,并保存抽取的数据,并绘制boxplot

前提:接着上述R脚本输出的seed结果来选择应该使用哪个seed比较合理,上个R脚本名字: “5utr_计算ABD中Ge1和Lt1的个数和均值以及按照TE个数小的进行随机100次抽样.R” 1.输入数据:“5utr-5d做ABD中有RG4和没有RG4的TE之间的T检验.c…

[深度学习]yolov8+pyqt5搭建精美界面GUI设计源码实现五

【简单介绍】 依托先进的目标检测算法YOLOv8与灵活的PyQt5界面开发框架,我们倾力打造出了一款集直观、易用与功能强大于一体的目标检测GUI界面软件。通过深度融合YOLOv8在目标识别领域的出色性能与PyQt5的精美界面设计,我们成功推出了一款高效且稳定的软…

苍穹外卖项目-01(开发流程,介绍,开发环境搭建,nginx反向代理,Swagger)

目录 一、软件开发整体介绍 1. 软件开发流程 1 第1阶段: 需求分析 2 第2阶段: 设计 3 第3阶段: 编码 4 第4阶段: 测试 5 第5阶段: 上线运维 2. 角色分工 3. 软件环境 1 开发环境(development) 2 测试环境(testing) 3 生产环境(production) 二、苍穹外卖项目介绍 …

软件接口安全设计规范及审计要点

1.token授权安全设计 2.https传输加密 3.接口调用安全设计 4.日志审计里监控 5.开发测试环境隔离,脱敏处理 6.数据库运维监控审计 项目管理全套资料获取:软件开发全套资料_数字中台建设指南-CSDN博客

微信商家转账到零钱:实用指南,涵盖开通、使用与常见问题

商家转账到零钱是什么? 商家转账到零钱功能整合了企业付款到零钱和批量转账到零钱,支持批量对外转账,操作便捷。如果你的应用场景是单付款,体验感和企业付款到零钱基本没差别。 商家转账到零钱的使用场景有哪些? 这…

雷达新研社丨宏电雷达流量计助力河源灌区流量监测,赋能灌区现代化建设

灌区工程是农田灌溉排水的骨干网,是保障粮食安全的生命线。为了助力粮食安全和推动广东“百县千镇万村高质量发展工程”,广东省河源市连平县实施了灌区现代化改造工程。 本项目涵盖对约188公里的农田灌排渠道的感知监测站点建设,宏电股份作为…

SCI一区 | Matlab实现WOA-TCN-BiGRU-Attention鲸鱼算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测

SCI一区 | Matlab实现WOA-TCN-BiGRU-Attention鲸鱼算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测 目录 SCI一区 | Matlab实现WOA-TCN-BiGRU-Attention鲸鱼算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测预测效果基本介绍模型描述程序…

Antd Pagination 解决点击重置按钮后分页器不刷新问题

问题描述: 原本: 问题: 解决方法: const [resetPageSize, setResetPageSize] useState(10); setResetPageSize(10) pageSize{resetPageSize} pageSizeChange //初始化const [resetPageSize, setResetPageSize] useState(10);//…

Python 全栈体系【四阶】(二十一)

第五章 深度学习 二、推荐系统 2. 协同过滤及实现 2.1 基于物品的协同过滤推荐技术(评分) 2.2 基于物品的协同过滤算法(Item_CF) 2.3 基于用户的协同过滤算法(user-based collaboratIve filtering) 2.4 基本原理 2.5 ICF 计算物品之间的相似度&#…

应用层协议 - HTTP

文章目录 目录 文章目录 前言 1 . 应用层概要 2. WWW 2.1 互联网的蓬勃发展 2.2 WWW基本概念 2.3 URI 3 . HTTP 3.1 工作过程 3.2 HTTP协议格式 3.3 HTTP请求 3.3.1 URL基本格式 3.3.2 认识方法 get方法 post方法 其他方法 3.3.2 认识请求报头 3.3.3 认识请…

JVM之堆

堆的核心概述 一个JVM实例只存在一个堆内存,堆也是内存管理的核心区域。 Java堆区在JVM启动的时候即被创建,其空间大小也就确定了。是JVM管理的最大一块内存空间。 堆内存的大小是可以调节的。 《JVM虚拟机规范》规定,堆可以处于物理上不连…

Spring Boot 整合分布式搜索引擎 Elastic Search 实现 自动补全功能

文章目录 ⛄引言一、分词器⛅拼音分词器⚡自定义分词器 二、自动补全查询三、自动补全⌚业务需求⏰实现酒店搜索自动补全 四、效果图⛵小结 ⛄引言 本文参考黑马 分布式Elastic search Elasticsearch是一款非常强大的开源搜索引擎,具备非常多强大功能,…

springboot swagger 接口文档分组展示

例如将 controller 分成四类,分别放到四个包下: xxx.xxx.xxx.controller.manage xxx.xxx.xxx.controller.client xxx.xxx.xxx.controller.authority xxx.xxx.xxx.controller.common SwaggerConfig.java: import io.swagger.annotations.Api…

机器学习笔记(2)—单变量线性回归

单变量线性回归 单变量线性回归(Linear Regression with One Variable)1.1 模型表示1.2 代价函数1.3 代价函数的直观理解1.4 梯度下降1.5 梯度下降的直观理解1.6 梯度下降的线性回归 单变量线性回归(Linear Regression with One Variable) ps:...今天很倒霉 一名小女孩悄悄地碎…