目录
背景
embedding
求最相似的 topk
结果查看
背景
想要求两个文本的相似度,就单纯相似度,不要语义相似度,直接使用 bert 先 embedding 然后找出相似的文本,效果都不太好,试过 bert-base-chinese,bert-wwm,robert-wwm 这些,都有一个问题,那就是明明不相似的文本却在结果中变成了相似,真正相似的有没有,
例如:手机壳迷你版,与这条数据相似的应该都是跟手机壳有关的才合理,但结果不太好,明明不相关的,余弦相似度都能有有 0.9 以上的,所以问题出在 embedding 上,找了适合做 embedding 的模型,再去计算相似效果好了很多,合理很多。
之前写了一篇 bert+np.memap+faiss文本相似度匹配 topN-CSDN博客 是把流程打通,现在是找适合文本相似的来操作。
模型:
bge-small-zh-v1.5
bge-large-zh-v1.5
embedding
数据弄的几条测试数据,方便看那些相似
我用 bge-large-zh-v1.5 来操作,embedding 代码,为了知道 embedding 进度,加了进度条功能,同时打印了当前使用 embedding 的 bert 模型输出为度,这很重要,会影响求相似的 topk
import numpy as np
import pandas as pd
import time
from tqdm.auto import tqdm
from transformers import AutoTokenizer, AutoModel
import torchclass TextEmbedder():def __init__(self, model_name="./bge-large-zh-v1.5"):# self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 自己电脑跑不起来 gpuself.device = torch.device("cpu")self.tokenizer = AutoTokenizer.from_pretrained(model_name)self.model = AutoModel.from_pretrained(model_name).to(self.device)self.model.eval()# 没加进度条的# def embed_sentences(self, sentences):# encoded_input = self.tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')# with torch.no_grad():# model_output = self.model(**encoded_input)# sentence_embeddings = model_output[0][:, 0]# sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)## return sentence_embeddings# 加进度条def embed_sentences(self, sentences):embedded_sentences = []for sentence in tqdm(sentences):encoded_input = self.tokenizer([sentence], padding=True, truncation=True, return_tensors='pt')with torch.no_grad():model_output = self.model(**encoded_input)sentence_embedding = model_output[0][:, 0]sentence_embedding = torch.nn.functional.normalize(sentence_embedding, p=2)embedded_sentences.append(sentence_embedding.cpu().numpy())print('当前 bert 模型输出维度为,', embedded_sentences[0].shape[1])return np.array(embedded_sentences)def save_embeddings_to_memmap(self, sentences, output_file, dtype=np.float32):embeddings = self.embed_sentences(sentences)shape = embeddings.shapeembeddings_memmap = np.memmap(output_file, dtype=dtype, mode='w+', shape=shape)embeddings_memmap[:] = embeddings[:]del embeddings_memmap # 关闭并确保数据已写入磁盘def read_data():data = pd.read_excel('新建 XLSX 工作表.xlsx')return data['addr'].to_list()def main():# text_data = ["这是第一个句子", "这是第二个句子", "这是第三个句子"]text_data = read_data()embedder = TextEmbedder()# 设置输出文件路径output_filepath = 'sentence_embeddings.npy'# 将文本数据向量化并保存到内存映射文件embedder.save_embeddings_to_memmap(text_data, output_filepath)if __name__ == "__main__":start = time.time()main()end = time.time()print(end - start)
求最相似的 topk
使用 faiss 索引需要设置 bert 模型的维度,所以我们前面打印出来了,要不然会报错,像这样的:
ValueError: cannot reshape array of size 10240 into shape (768)
所以 print('当前 bert 模型输出维度为,', embedded_sentences[0].shape[1]) 的值换上去,我这里打印的 1024
index = faiss.IndexFlatL2(1024) # 假设BERT输出维度是768# 确保embeddings_memmap是二维数组,如有需要转换
if len(embeddings_memmap.shape) == 1:embeddings_memmap = embeddings_memmap.reshape(-1, 1024)
完整代码
import pandas as pd
import numpy as np
import faiss
from tqdm import tqdmdef search_top4_similarities(index_path, data, topk=4):embeddings_memmap = np.memmap(index_path, dtype=np.float32, mode='r')index = faiss.IndexFlatL2(768) # 假设BERT输出维度是768# 确保embeddings_memmap是二维数组,如有需要转换if len(embeddings_memmap.shape) == 1:embeddings_memmap = embeddings_memmap.reshape(-1, 768)index.add(embeddings_memmap)results = []for i, text_emb in enumerate(tqdm(embeddings_memmap)):D, I = index.search(np.expand_dims(text_emb, axis=0), topk) # 查找前topk个最近邻# 获取对应的 nature_df_img_id 的索引top_k_indices = I[0][:topk] ## 根据索引提取 nature_df_img_idtop_k_ids = [data.iloc[index]['index'] for index in top_k_indices]# 计算余弦相似度并构建字典cosine_similarities = [cosine_similarity(text_emb, embeddings_memmap[index]) for index in top_k_indices]top_similarity = dict(zip(top_k_ids, cosine_similarities))results.append((data['index'].to_list()[i], top_similarity))return results# 使用余弦相似度公式,这里假设 cosine_similarity 是一个计算两个向量之间余弦相似度的函数
def cosine_similarity(vec1, vec2):return np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2))def main_search():data = pd.read_excel('新建 XLSX 工作表.xlsx')data['index'] = data.indexsimilarities = search_top4_similarities('sentence_embeddings.npy', data)# 输出结果similar_df = pd.DataFrame(similarities, columns=['id', 'top'])similar_df.to_csv('similarities.csv', index=False)# 执行搜索并保存结果
main_search()
结果查看
看一看到余弦数值还是比较合理的,没有那种明明不相关但余弦值是 0.9 的情况了,这两个模型还是可以的
实际案例
以前做过一个地址相似度聚合的,找出每个地址与它相似的地址,最多是 0-3 个相似的地址(当时人工验证过的,这里直接说明)
我们用 bge-small-zh-v1.5 模型来做 embedding,这个模型维度是 512,数据是店名id,地址两列
embedding 代码:
import numpy as np
import pandas as pd
import time
from tqdm.auto import tqdm
from transformers import AutoTokenizer, AutoModel
import torchclass TextEmbedder():def __init__(self, model_name="./bge-small-zh-v1.5"):# self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 自己电脑跑不起来 gpuself.device = torch.device("cpu")self.tokenizer = AutoTokenizer.from_pretrained(model_name)self.model = AutoModel.from_pretrained(model_name).to(self.device)self.model.eval()# 没加进度条的# def embed_sentences(self, sentences):# encoded_input = self.tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')# with torch.no_grad():# model_output = self.model(**encoded_input)# sentence_embeddings = model_output[0][:, 0]# sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)## return sentence_embeddingsdef embed_sentences(self, sentences):embedded_sentences = []for sentence in tqdm(sentences):encoded_input = self.tokenizer([sentence], padding=True, truncation=True, return_tensors='pt')with torch.no_grad():model_output = self.model(**encoded_input)sentence_embedding = model_output[0][:, 0]sentence_embedding = torch.nn.functional.normalize(sentence_embedding, p=2)embedded_sentences.append(sentence_embedding.cpu().numpy())print('当前 bert 模型输出维度为,', embedded_sentences[0].shape[1])return np.array(embedded_sentences)def save_embeddings_to_memmap(self, sentences, output_file, dtype=np.float32):embeddings = self.embed_sentences(sentences)shape = embeddings.shapeembeddings_memmap = np.memmap(output_file, dtype=dtype, mode='w+', shape=shape)embeddings_memmap[:] = embeddings[:]del embeddings_memmap # 关闭并确保数据已写入磁盘def read_data():data = pd.read_excel('data.xlsx')return data['address'].to_list()def main():# text_data = ["这是第一个句子", "这是第二个句子", "这是第三个句子"]text_data = read_data()embedder = TextEmbedder()# 设置输出文件路径output_filepath = 'sentence_embeddings.npy'# 将文本数据向量化并保存到内存映射文件embedder.save_embeddings_to_memmap(text_data, output_filepath)if __name__ == "__main__":start = time.time()main()end = time.time()print(end - start)
求 embeddgin 是串行的,要想使用 gpu ,可以需修改 embed_sentences 函数:
def embed_sentences(self, sentences, batch_size=32):inputs = self.tokenizer(sentences, padding=True, truncation=True, return_tensors='pt').to(self.device)# 计算批次数量batch_count = (len(inputs['input_ids']) + batch_size - 1) // batch_sizeembeddings_list = []with tqdm(total=len(sentences), desc="Embedding Progress") as pbar:for batch_idx in range(batch_count):start = batch_idx * batch_sizeend = min((batch_idx + 1) * batch_size, len(inputs['input_ids']))current_batch_input = inputs[start:end]with torch.no_grad():model_output = self.model(**current_batch_input)sentence_embeddings = model_output[0][:, 0]embedding_batch = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1).cpu().numpy()# 将当前批次的嵌入向量添加到列表中embeddings_list.extend(embedding_batch.tolist())# 更新进度条pbar.update(end - start)# 将所有批次的嵌入向量堆叠成最终的嵌入矩阵embeddings = np.vstack(embeddings_list)return embeddings
求 topk 的,我们求 top4 就可以了
import pandas as pd
import numpy as np
import faiss
from tqdm import tqdmdef search_top4_similarities(data_target_embedding, data_ori_embedding, data_target, data_ori, topk=4):target_embeddings_memmap = np.memmap(data_target_embedding, dtype=np.float32, mode='r')ori_embeddings_memmap = np.memmap(data_ori_embedding, dtype=np.float32, mode='r')index = faiss.IndexFlatL2(512) # BERT输出维度# 确保embeddings_memmap是二维数组,如有需要转换if len(target_embeddings_memmap.shape) == 1:target_embeddings_memmap = target_embeddings_memmap.reshape(-1, 512)if len(ori_embeddings_memmap.shape) == 1:ori_embeddings_memmap = ori_embeddings_memmap.reshape(-1, 512)index.add(target_embeddings_memmap)results = []for i, text_emb in enumerate(tqdm(ori_embeddings_memmap)):D, I = index.search(np.expand_dims(text_emb, axis=0), topk) # 查找前topk个最近邻# 获取对应的 nature_df_img_id 的索引top_k_indices = I[0][:topk] ## 根据索引提取 nature_df_img_idtop_k_ids = [data_target.iloc[index]['store_id'] for index in top_k_indices]# 计算余弦相似度并构建字典cosine_similarities = [cosine_similarity(text_emb, target_embeddings_memmap[index]) for index in top_k_indices]top_similarity = dict(zip(top_k_ids, cosine_similarities))results.append((data_ori['store_id'].to_list()[i], top_similarity))return results# 使用余弦相似度公式,这里假设 cosine_similarity 是一个计算两个向量之间余弦相似度的函数
def cosine_similarity(vec1, vec2):return np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2))def main_search():data_target = pd.read_excel('data.xlsx')data_ori = pd.read_excel('data.xlsx')data_target_embedding = 'sentence_embeddings.npy'data_ori_embedding = 'sentence_embeddings.npy'similarities = search_top4_similarities(data_target_embedding, data_ori_embedding, data_target, data_ori)# 输出结果similar_df = pd.DataFrame(similarities, columns=['id', 'top'])similar_df.to_csv('similarities.csv', index=False)def format_res():similarities_data = pd.read_csv('similarities.csv')ori_data = pd.read_excel('data.xlsx')target_data = pd.read_excel('data.xlsx')res = pd.DataFrame()for index, row in similarities_data.iterrows():ori_id = row['id']tops = row['top']tmp_ori_data = ori_data[ori_data['store_id'] == ori_id]tmp_target_data = target_data[target_data['store_id'].isin(list(eval(tops).keys()))]res_tmp = pd.merge(tmp_ori_data, tmp_target_data, how='cross')res = pd.concat([res, res_tmp])print(f'进度 {index + 1}/{len(similarities_data)}')res.to_excel('format.xlsx', index=False)# 执行搜索并保存结果
# main_search()# 格式化
format_res()
在这里我们把原始数据当两份使用,一份作为目标数据,一份原始数据,要原始数据的每一个地址在目标数据中找相似的
最后为了人工方便查看验证,数据格式化了,开始我说了,这数据结果每个地址跟它相似的有 0-3 条,黄色的每一组,红色的是真正相似的,从结果上来看,还是符合预期的
代码链接:
链接:https://pan.baidu.com/s/1S951j1TNoN9XbRA286jU-w
提取码:nb4b