基于GA遗传优化的离散交通网络双层规划模型设计matlab仿真

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

5.完整程序


1.程序功能描述

基于GA遗传优化的离散交通网络双层规划模型设计.优化输出路段1和路段2的收费情况收敛过程。

2.测试软件版本以及运行结果展示

MATLAB2022a版本运行

3.核心程序

.....................................................................
while gen < MAXGEN;   rng(gen)genP1 = 0.9;P2 = 1-P1;FitnV=ranking(Objv);    Selch=select('sus',Chrom,FitnV);    Selch=recombin('xovsp', Selch,P1);   Selch=mut( Selch,P2);   phen1=bs2rv(Selch,FieldD);   for a=1:1:NIND  if  gen == 1Cost1(a) = Cost1_intial;       Cost2(a) = Cost2_intial;               elseCost1(a) = phen1(a,1);   Cost2(a) = phen1(a,2);   end%计算对应的目标值[errs,a1,a2,eas,tas,xa3] = func_obj(Cost1(a),Cost2(a));E               = errs;JJ(a,1)         = E;end Objvsel      =(JJ+eps);    [Chrom,Objv] = reins(Chrom,Selch,1,1,Objv,Objvsel);   gen          = gen+1; %保存参数收敛过程和误差收敛过程以及函数值拟合结论Cost1gen(gen) = mean(Cost1);Cost2gen(gen) = mean(Cost2); F(gen)        = mean(JJ);if gen <=32F2(gen)        = mean(F(1:gen));Cost1gen2(gen) = mean(Cost1gen(1:gen));Cost2gen2(gen) = mean(Cost2gen(1:gen));elseF2(gen)        = mean(F(gen-32:gen)); Cost1gen2(gen) = mean(Cost1gen(gen-32:gen));Cost2gen2(gen) = mean(Cost2gen(gen-32:gen));end
end Cost1f = Cost1gen(end);   
Cost2f = Cost2gen(end);   figure;
plot(F2(2:end),'linewidth',2);
xlabel('迭代次数');
ylabel('上层目标函数');
grid onfigure;
plot(Cost1gen2(2:end),'r','linewidth',2);
hold on
plot(Cost2gen2(2:end),'b','linewidth',2);
xlabel('迭代次数');
ylabel('收费情况');
legend('路段1','路段2');
grid ondisp('流量');
eas
06_029m

4.本算法原理

1. 使用一氧化碳作为路网车辆尾气排放的代表指标,计算公式如下:

2. 双层规划模型
上层模型
采用多目标模型,系统总出行时间最小,同时区域排放最小

3.下层模型

采用固定需求的用户平衡(UE),总阻抗最小

N——网络中节点的集合;

L——网络中路段的集合;

R——网络中出发地的集合;

S——网络中目的地的集合;

 ——出发地 和目的地 之间的所有径路的集合;

 ——出发地 和目的地 之间的OD交通量;

5.完整程序

VVV

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/291567.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

组蛋白脱乙酰酶介导的胃癌肿瘤微环境特征及协同免疫治疗(多组学文献学习)

目录 ①HDAC转录组多数据NMF一次聚类 ②ACRG队列中HDAC单独NMF聚类 ③HDS评分在胃癌中的临床特征和基因组特征 ④高 HDS 可能提示胃癌的“热”肿瘤状态 ⑤HDS是胃癌免疫治疗效果的有力预测指标 ⑥单细胞转录组测序揭示了高HDS和低HDS患者的TME ⑦内皮细胞和成纤维细胞可…

BGP实训

BGP基础配置实训 实验拓扑 注&#xff1a;如无特别说明&#xff0c;描述中的 R1 或 SW1 对应拓扑中设备名称末尾数字为 1 的设备&#xff0c;R2 或 SW2 对应拓扑中设备名称末尾数字为2的设备&#xff0c;以此类推&#xff1b;另外&#xff0c;同一网段中&#xff0c;IP 地址的主…

web学习笔记(四十五)Node.js

目录 1. Node.js 1.1 什么是Node.js 1.2 为什么要学node.js 1.3 node.js的使用场景 1.4 Node.js 环境的安装 1.5 如何查看自己安装的node.js的版本 1.6 常用终端命令 2. fs 文件系统模块 2.1引入fs核心模块 2.2 读取指定文件的内容 2.3 向文件写入指定内容 2.4 创…

git下载安装教程

git下载地址 有一个镜像的网站可以提供下载&#xff1a; https://registry.npmmirror.com/binary.html?pathgit-for-windows/图太多不截了哈哈&#xff0c;一直next即可。

鸿蒙 UIAbility和Compent 生命周期

一、UIAbility的生命周期 在UIAbility的使用过程中&#xff0c;会有多种生命周期状态&#xff0c;掌握UIAbility的生命周期&#xff0c;对于应用的开发非常重要。 1、UIAbility的生命周期 UIAbility的生命周期主要分为以下4个&#xff1a; Create---Foreground---Background---…

RabbitMQ 延时消息实现

1. 实现方式 1. 设置队列过期时间&#xff1a;延迟队列消息过期 死信队列&#xff0c;所有消息过期时间一致 2. 设置消息的过期时间&#xff1a;此种方式下有缺陷&#xff0c;MQ只会判断队列第一条消息是否过期&#xff0c;会导致消息的阻塞需要额外安装 rabbitmq_delayed_me…

C++从入门到精通——缺省参数

缺省参数 前言一、缺省参数概念二、缺省参数分类位置参数的缺省参数全缺省参数半缺省参数 关键字参数的缺省参数函数指针的缺省参数lambda表达式 三、缺省参数的具体代码展示main.cpp 前言 缺省参数是在函数定义时指定的默认值&#xff0c;当调用函数时未提供该参数的值时&…

暴雨服务器X7740赋能大模型训练

数字经济浪潮愈演愈烈,大模型训练对服务器的要求也越来越高。在此背景下,暴雨信息发布专门为大规模模型训练而设计的全新旗舰GPU服务器—X7740,以卓越的计算性能、高速网络通信能力以及创新的能效表现,有效赋能大模型训练。 X7740 搭载了暴雨信息最新一代的英特尔至强可扩展处理…

如何划分训练集、测试集、验证集

训练集、测试集和验证集是在机器学习和数据科学中常用的术语&#xff0c;用于评估和验证模型的性能。它们通常用于监督学习任务中。 1. 训练集&#xff08;Training Set&#xff09;&#xff1a;训练集是用于训练机器学习模型的数据集。在训练期间&#xff0c;模型使用训练集中…

Leetcode - 周赛390

目录 一&#xff0c;3090. 每个字符最多出现两次的最长子字符串 二&#xff0c;3091. 执行操作使数据元素之和大于等于 K 三&#xff0c;3092. 最高频率的 ID 四&#xff0c;3093. 最长公共后缀查询 一&#xff0c;3090. 每个字符最多出现两次的最长子字符串 本题是一道标准…

嵌入式C语言中头文件计设规则方法

我是阿梁,最近在负责的项目代码,也算是祖传代码了,里面有很多头文件嵌套的情况,即a.h包含b.h,b.h又包含c.h,c.h又包含d.h......遂找到一份华子的C语言编程规范学习一下,并结合自己的理解写成这篇文章,以规范自己的代码。 1. 头文件嵌套的缺点 依赖:若x.h包含了y.h,则…

启信宝商业大数据助力全国经济普查

近日&#xff0c;合合信息旗下启信宝收到中国青年创业就业基金会感谢信&#xff0c;对启信宝协同助力全国经济普查和服务青年创业就业研究表达感谢。 第五次全国经济普查是新时代新征程上一次重大国情国力调查&#xff0c;是对国民经济“全面体检”和“集中盘点”&#xff0c;…

武汉星起航:亚马逊受惠国家政策,企业成长与行业发展齐头并进

亚马逊电商平台作为国际知名的跨境电商巨头&#xff0c;在中国市场也展现出了强劲的发展势头。近年来&#xff0c;国家政策对亚马逊电商平台的支持力度不断加大&#xff0c;为企业提供了良好的发展环境和机遇。武汉星起航将探讨国家政策对亚马逊电商平台的重要影响&#xff0c;…

深度思考:雪花算法snowflake分布式id生成原理详解

雪花算法snowflake是一种优秀的分布式ID生成方案&#xff0c;其优点突出&#xff1a;它能生成全局唯一且递增的ID&#xff0c;确保了数据的一致性和准确性&#xff1b;同时&#xff0c;该算法灵活性强&#xff0c;可自定义各部分bit位&#xff0c;满足不同业务场景的需求&#…

QT使用数据库

数据库就是保存数据的文件。可以存储大量数据&#xff0c;包括插入数据、更新数据、截取数据等。用专业术语来说&#xff0c;数据库是“按照数据结构来组织、存储和管理数据的仓库”。 什么时候需要数据库&#xff1f;在嵌入式里&#xff0c;存储大量数据&#xff0c;或者记录数…

【项目技术介绍篇】若依开源项目RuoYi-Cloud后端技术介绍

作者介绍&#xff1a;本人笔名姑苏老陈&#xff0c;从事JAVA开发工作十多年了&#xff0c;带过大学刚毕业的实习生&#xff0c;也带过技术团队。最近有个朋友的表弟&#xff0c;马上要大学毕业了&#xff0c;想从事JAVA开发工作&#xff0c;但不知道从何处入手。于是&#xff0…

双端队列deque和vector以及list的优缺点比较

参考:https://blog.csdn.net/TWRenHao/article/details/123483085 一、vector vector具体用法详情点这里 优点&#xff1a; 支持随机访问 CPU高速环缓存命中率很高 缺点&#xff1a; 空间不够&#xff0c;便需要增容。而增容代价很大&#xff0c;还存在一定的空间浪费。 头部…

在同一个网站上自动下载多个子页面内容

一、问题现象 第一次遇到这样的问题&#xff0c;如下图&#xff1a; 即在同一个网站上下载多个内容时&#xff0c;第一个内容明明已经正常get到了&#xff0c;但开始第二个页面的查询 以后&#xff0c;原来已经查出的内容就找不到了。 二、解决办法 我不知道大家是不是遇到…

C++项目——集群聊天服务器项目(七)Model层设计、注册业务实现

在前几节的研究中&#xff0c;我们已经实现网络层与业务层分离&#xff0c;本节实现数据层与业务层分离&#xff0c;降低各层之间的耦合性&#xff0c;同时实现用户注册业务。 网络层专注于处理网络通信与读写事件 业务层专注于处理读写事件到来时所需求的各项业务 数据层专…

msvcr110.dll文件丢失要怎么办?教你多种解决msvcr110.dll文件的方法

面对“程序无法启动&#xff0c;因为电脑中缺失msvcr110.dll”的错误提示&#xff0c;你可能会觉得你的工作或者休闲时间被意外中断了&#xff0c;这确实很让人烦恼。这种问题对于很多Windows用户来说并不陌生&#xff0c;但幸运的是&#xff0c;它通常可以通过几个简单的步骤得…