排序第五篇 归并排序

一 简介

归并排序(Merge Sort) 的基本思想是: 首先将待排序文件看成 n n n 个长度为1的有序子文件, 把这些子文件两两归并, 得到 n 2 \frac{n}{2} 2n 个长度为 2 的有序子文件;

然后再把这 n 2 \frac{n}{2} 2n 个有序的子文件两两归并, 如此反复,直到最后得到一个长度为 n n n 的有序文件为止, 这种排序方法称为二路归并排序

在本文中,我们讨论的归并排序特指二路归并排序. 看一个示意图:
在这里插入图片描述

二 实现过程

归并排序的核心操作是将数组中前后相邻的两个有序序列归并为一个有序序列.
以java为例,看一个demo。

public class MergeSort {public static void main(String[] args) {Integer[] array = new Integer[]{30,45,10,30,50};System.out.println("归并排序初始顺序\n"+ Arrays.toString(array));mergeSort(array);System.out.println("归并排序最后顺序\n"+Arrays.toString(array));}static void mergeSort(Integer[] arr) {sort(arr, 0, arr.length - 1);}/**** 将两个有序序列归并为一个有序序列*/static void sort(Integer[] arr, int low, int high) {if (low >= high) {return;}int mid = low + (high - low) / 2;sort(arr, low, mid);sort(arr, mid + 1, high);merge(arr, low, mid, high);}static void merge(Integer[] arr, int low, int mid, int high) {//定义了一个临时数组int[] temp = new int[high - low + 1];int i = low, j = mid + 1, k = 0;while (i <= mid && j <= high) {temp[k++] = arr[i] <= arr[j] ? arr[i++] : arr[j++];}while (i <= mid) {//将原数组从下标 low~middle 中剩余的复制到 temptemp[k++] = arr[i++];}while (j <= high) {//将原数组从下标 middle+1 ~ high 中剩余的复制到 temptemp[k++] = arr[j++];}for (i = 0; i < k; i++) {arr[low + i] = temp[i];}}
}

程序运行结果
在这里插入图片描述

归并排序算法

归并排序算法可看作递归算法, 虽然有的书写成不是递归算法同样实现了

三 步骤

第一步: 一趟归并排序的基本思想是, 在某趟归并中, 设各子文件长度为len(最后一个子文件的长度可能会小于len), 则归并前 R [ 1.. n ] R[1..n] R[1..n] 共有 n l e n \frac{n}{len} lenn 个有序子文件。 调用归并操作对子文件进行归并时, 必须对子文件的个数可能是奇数、最后一个子文件和长度可能小于 l e n len len 这两种特殊情况进行处理:

  1. 若子文件个数为奇数,则最后个子文件无需和其他子文件归并;
  2. 若子文件个数为偶数,则要注意最后一对子文件中后一个子文件的区间上界为 n n n.

第二步: 归并排序的过程需要进行 l o g 2 log_{2} log2 n {n} n 趟。 每一趟排序的操作,就是将两个有序子文件进行归并,
而每一对有序子文件归并时,
记录的比较次数均小于等于记录的移动次数,
记录移动的次数均等于文件中记录的个数
, 即每一趟归并的时间复杂度为 O ( n ) O(n) O(n)
因此归并排序的时间复杂度为 O ( n l o g 2 O(nlog_{2} O(nlog2 n n n ) ) ).
从上述例子可以看出, 空间复杂度为 O ( n ) O(n) O(n)

归并排序是稳定的, 因为在每两个有序子文件 归并时, 若分别在两个有序子文件中出现有相同关键字的记录时, 归并排序算法能够使前一个子文件中同一关键字的记录被先复制,后一子文件中同一关键字的记录后被复制,从而确保它们的相对次序不变。

四 归并算法的优缺点

优点

  1. 适合于大规模数据量,并且要求稳定。
  2. 在基于比较的算法中是最高效率。

缺点
需要数据集长度的辅助空间, 在一定程度上增加了空间复杂度。
如果初始数据几乎填满整个内存,归并排序可能无法工作。

综上,归并算法是应用于大规模数据集最好的排序算法

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/292564.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

EI期刊和EI会议有哪些不同?别再傻傻分不清

EI工程索引是综合性检索机构&#xff0c;是三个著名学术检索系统之一&#xff0c;EI工程索引也分为EI期刊和EI会议&#xff0c;那么两者有哪些不同&#xff1f;作者又该如何选&#xff1f;本文系统分享一下相关的知识&#xff0c;仅供学术人员参考&#xff1a; 第一、文章质量不…

2014年认证杯SPSSPRO杯数学建模A题(第二阶段)轮胎的花纹全过程文档及程序

2014年认证杯SPSSPRO杯数学建模 A题 轮胎的花纹 原题再现&#xff1a; 轮胎被广泛使用在多种陆地交通工具上。根据性能的需要&#xff0c;轮胎表面常会加工出不同形状的花纹。在设计轮胎时&#xff0c;往往要针对其使用环境&#xff0c;设计出相应的花纹形状。   第二阶段问…

南京观海微电子---Vitis HLS的工作机制——Vitis HLS教程

1. 前言 Vitis HLS&#xff08;原VivadoHLS&#xff09;是一个高级综合工具。用户可以通过该工具直接将C、 C编写的函数翻译成HDL硬件描述语言&#xff0c;最终再映射成FPGA内部的LUT、DSP资源以及RAM资源等。 用户通过Vitis HLS&#xff0c;使用C/C代码来开发RTL IP核&#x…

前端优化gzip

gzip是GNUzip的缩写&#xff0c;是一种文件的压缩格式&#xff08;也可以说是若干种文件压缩程序&#xff09;&#xff0c;类似的压缩格式还有compress&#xff08;webpack&#xff09;&#xff0c;deflate等 主要用于组件的压缩 压缩的话主要分为两种&#xff0c; 服务器在…

TCP网络协议栈和Posix网络部分API总结

文章目录 Posix网络部分API综述TCP协议栈通信过程TCP三次握手和四次挥手&#xff08;看下图&#xff09;三次握手常见问题&#xff1f;为什么是三次握手而不是两次&#xff1f;三次握手和哪些函数有关&#xff1f;TCP的生命周期是从什么时候开始的&#xff1f; 四次挥手通信状态…

强化基础-Java-泛型基础

什么是泛型&#xff1f; 泛型其实就参数化类型&#xff0c;也就是说这个类型类似一个变量是可变的。 为什么会有泛型&#xff1f; 在没有泛型之前&#xff0c;java中是通过Object来实现泛型的功能。但是这样做有下面两个缺陷&#xff1a; 1 获取值的时候必须进行强转 2 没有…

005 高并发内存池_CentralCache设计

​&#x1f308;个人主页&#xff1a;Fan_558 &#x1f525; 系列专栏&#xff1a;高并发内存池 &#x1f339;关注我&#x1f4aa;&#x1f3fb;带你学更多知识 文章目录 前言本文重点一、构建CentralCache结构二、运用慢开始反馈调节算法三、完成向CentralCache中心缓存申请四…

【linux】AMD GPU和NVIDIA GPU驱动安装

AMD GPUs - Radeon™ PRO W7900的驱动安装过程 要在Linux系统上安装AMD的Radeon™ PRO W7900显卡驱动程序&#xff0c;通常需要执行以下步骤。以下示例基于Ubuntu系统&#xff1b;其他Linux发行版的具体步骤可能有所不同。 1. 更新系统 打开一个终端窗口&#xff0c;并输入…

Thread 之start 和run 的区别

Java Thread 之start 和run 的区别 用start方法来启动线程&#xff0c;真正实现了多线程运行&#xff0c;这时无需等待run方法体代码执行完毕而直接继续执行下面的代码。通过调用Thread类的start()方法来启动一个线程&#xff0c;这时此线程处于就绪&#xff08;可运行&#x…

自然语言处理3(NLP)—— 机器学习

1. 自然语言处理在机器学习领域的主要任务 自然语言处理&#xff08;NLP&#xff09;在机器学习领域中扮演着至关重要的角色&#xff0c;旨在使计算机能够理解、解释和生成人类语言。以下是NLP在机器学习领域中的主要任务及其分类方法&#xff1a; 1.1 按照功能类型分类 1.1.…

详解JAVA程序调优

目录 1.概述 2.命令 2.1.查看JAVA进程 2.2.查看虚拟机状态 2.3.查看线程的情况 3.工具 3.1.jconsole 3.2.jvisualVM 4.实战场景 1.概述 在实际工作中我们难免会遇见程序执行慢、线程死锁等一系列的问题&#xff0c;这时候就需要我们定位具体问题然后来解决问题了。所…

政安晨:【深度学习神经网络基础】(一)—— 逐本溯源

政安晨的个人主页&#xff1a;政安晨 欢迎 &#x1f44d;点赞✍评论⭐收藏 收录专栏: 政安晨的机器学习笔记 希望政安晨的博客能够对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff01; 与计算机一样的古老历史 神经网络的出现可追溯到20世纪40年…

LeetCode101:对称二叉树

题目描述 给你一个二叉树的根节点 root &#xff0c; 检查它是否轴对称。 代码 递归 class Solution { public:bool compare(TreeNode* left, TreeNode* right) {if (left nullptr && right ! nullptr) return false;else if (left ! nullptr && right nul…

基于Matlab的血管图像增强算法,Matlab实现

博主简介&#xff1a; 专注、专一于Matlab图像处理学习、交流&#xff0c;matlab图像代码代做/项目合作可以联系&#xff08;QQ:3249726188&#xff09; 个人主页&#xff1a;Matlab_ImagePro-CSDN博客 原则&#xff1a;代码均由本人编写完成&#xff0c;非中介&#xff0c;提供…

学习鸿蒙基础(9)

目录 一、鸿蒙国际化配置 二、鸿蒙常用组件介绍 三、鸿蒙像素单位介绍 四、鸿蒙布局介绍 1、Row与Column线性布局 2、层叠布局-Stack 3、弹性布局 4、栅格布局 5、网格布局 一、鸿蒙国际化配置 base目录下为默认的string。en_US对应美国的。zh_CN对应中国的。新增一个s…

ActiveMQ Artemis 系列| High Availability 主备模式(消息复制) 版本2.19.1

一、ActiveMQ Artemis 介绍 Apache ActiveMQ Artemis 是一个高性能的开源消息代理&#xff0c;它完全符合 Java Message Service (JMS) 2.0 规范&#xff0c;并支持多种通信协议&#xff0c;包括 AMQP、MQTT、STOMP 和 OpenWire 等。ActiveMQ Artemis 由 Apache Software Foun…

小白从0学习ctf(web安全)

文章目录 前言一、baby lfi&#xff08;bugku-CTF&#xff09;1、简介2、解题思路1、解题前置知识点2、漏洞利用 二、baby lfi 2&#xff08;bugku-CTF&#xff09;1.解题思路1、漏洞利用 三、lfi&#xff08;bugku CTF&#xff09;1、解题思路1、漏洞利用 总结 前言 此文章是…

瓷砖通铺选择亮面还是哑光?了解这6点不难选。福州中宅装饰,福州装修

选择瓷砖通铺亮面还是哑光&#xff0c;可以从多个角度来考虑&#xff1a; ①空间感觉 亮面瓷砖通常会使空间看起来更加宽敞和明亮&#xff0c;而哑光瓷砖则给人大气、稳重的感觉。如果希望让空间显得更加宽敞&#xff0c;亮面瓷砖是一个不错的选择。 ②清洁与维护 亮面瓷砖更…

云电脑安全性怎么样?企业如何选择安全的云电脑

云电脑在保障企业数字资产安全方面&#xff0c;采取了一系列严谨而全面的措施。随着企业对于数字化转型的深入推进&#xff0c;数字资产的安全问题日益凸显&#xff0c;而云电脑作为一种新兴的办公模式&#xff0c;正是为解决这一问题而生。云电脑安全吗&#xff1f;可以放心使…

React系列之合成事件与事件处理机制

文章目录 React事件处理机制原生事件的事件机制事件代理&#xff08;事件委托&#xff09; 合成事件使用合成事件目的合成事件原生事件区别事件池 原生事件和React事件的执行顺序e.stopPropagation() React17事件机制的修改 React事件处理机制 react 事件机制基本理解&#xf…