2014年认证杯SPSSPRO杯数学建模A题(第二阶段)轮胎的花纹全过程文档及程序

2014年认证杯SPSSPRO杯数学建模

A题 轮胎的花纹

原题再现:

  轮胎被广泛使用在多种陆地交通工具上。根据性能的需要,轮胎表面常会加工出不同形状的花纹。在设计轮胎时,往往要针对其使用环境,设计出相应的花纹形状。
  第二阶段问题: 轮胎花纹的形状对轮胎的性能有着可观的影响。推出一款新的轮胎时,往往也要对花纹形状进行认真的设计和优化。请你建立合理的数学模型,当给定车辆情况、路面条件和使用需求时,设计出合适的轮胎花纹。

整体求解过程概述(摘要)

  本文针对轮胎花纹的设计建立了一个多目标规划的模型。通过轮胎花纹对于轮胎性能的影响,我们将所影响轮胎的性能转化为六项可见的指标(承载性能、防滑性能、牵引性能、减噪性能、耐磨性能),并以这六项指标来建立多目标规划的模型,并用 TOPSIS分析法来得到最终的最优解。对于如何设计出轮胎花纹,我们可将其分解为以下几个部分来求解影响花纹设计的几个参数,最终得到轮胎花纹的设计方案。
  第一部分:我们将驾车者对于轮胎使用需求分为三类:车辆情况、路面条件、行车条件。将这三类需求的每种情况所对应的轮胎性能的要求进行量化,并用矩阵表示。同时,通过权值分析,将给定车辆情况、路面条件、行车条件后对轮胎性能的要求表示出来,并用储存在目标向量。
  第二部分:结合文献资料,我们总结出 3 个轮胎花纹设计要素(轮胎花纹走向、沟槽比、沟槽深度),并且将花纹的设计因素对轮胎性能的影响进行评价,最终进行量化。通过引入参数θ (横纹倾斜度), x (横纹所占总花纹面积比),b (沟槽比),c(沟槽深度),然后由目标向量来建立一个非线性规划模型,再对其进行优化,将非线性规划
转化为图中寻求最优路径的问题。
  第三部分:在第二部分中寻找到了所有可行路径后,为了寻求在多个目标均最优的条件下最优解,通过 TOPSIS 分析法,对所有可行路径进行从优到劣的排列,得到所需求的最优路径,从而也确定了花纹的设计方案。

问题分析:

  在解决上述三个问题之前,我们首先确定对轮胎的性能评价分类:承载性能、防滑性能、牵引性能、减噪性能、缓冲性能。耐磨性能,这六项性能基本包括了轮胎能力涵盖的范围。
  针对问题 1,不同消费者会给出不同的车辆情况、路面条件、使用需求。以路面条件为例,就可以划分为沙地、碎石地、山地、雨雪地、沼泽地、高速公路、沥青路面、水泥路面,这样的分类方式过于繁杂,处理数据过程中很容易出现纰漏。如果仅依靠几个特殊的条件得到的花纹组合那么将不具有解决问题的通用性、很难体现数学建模的实际意义。我们要做的便是通过资料的收集,将消费者对于车辆情况、路面条件、使用需求的约束条件进行归纳分析,将其分为三大类,每个大类选取典型的影响因子,将这些典型的影响因子量化,这样做即达到了简化数学模型的目的,又不会丢失过多的影响因素,影响文章的准确性。
  针对问题 2,通过对第一阶段问题的研究,我们得到了轮胎花纹的性能特征、影响因素,但这些结论大部分是定性结论,如果想实现给定条件下设计出合适的花纹,必须将花纹设计因素量化成性能评分,通过分数评定得到给定条件下的花纹组合。通过查询一系列资料,我们将花纹的设计因素归纳为轮胎花纹走向、沟槽比、沟槽深度。将这三个设计因素与轮胎的六项性能建立分值联系,达到量化的效果。其中在花纹走向的分析上,我们将横纵向花纹根据其在整体花纹组合中的贡献度进行复合,得到一个比较完善的花纹走向评分模型;沟槽比、沟槽深度则通过资料介绍、测量得到合理的区间范围,引入量化模型。
  针对问题 3,通过前两个问题已经分别得到了花纹性能评价的量化评分指标,实际需求条件对于性能的量化评分指标,通过某一给定的实际需求指标,计算出能够满足该需求的轮胎花纹所有组合,最后通过多目标规划等数学建模方法,减小可行域,得到相应的可行解,再通过对于实际问题的分析得到轮胎花纹设计的最优化解决方案,完成轮胎花纹设计方案。

模型假设:

  1.假设轮胎使用的材质相同;
  2.假设轮胎的半径以及胎壁厚度相同;
  3.假设轮胎花纹性质仅由花纹走向,沟槽比,沟深决定。

论文缩略图:

在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

部分程序代码:(代码和文档not free)

function [routes,combinc,all]=essential(theta,x,a,b,c,target)
%Tranverse all the combinations of elements in a, b, c, caclulate weight of routes connected
to a, b, c.
combin=[];routes=[];routes1=[];combinc=[];
all=[];
for i=1:5
for j=1:6
extent(i,j)=a(1,j)*cos(theta(i))+a(2,j)*sin(theta(i));
end
end
for i=1:6
extent(6,i)=a(2,i);
end
for k=1:5for i=1:5
for j=1:6
combin1(i,j)=x(k)*extent(i,j)+(1-x(k))*extent(6,j);
end
end
combin=[combin;combin1];
end
for i=1:25
for j=1:4
combinb(j,:)=combin(i,:)+b(j,:);
for k=1:4
combinc1(k,:)=combinb(j,:)+c(k,:);
flag=0;
for m=1:6
if combinc1(k,m)-target(m)<0
flag=1;
continue;
end
end
if flag==0;
routes1=[i,j,k];
routes=[routes;routes1];
combinc=[combinc;combinc1(k,:)];
end
end
all=[all;combinc1];
end
end
(2)Topsis 法:将原始的组合信息 combinc 转换成规范矩阵
function norm_matrix=create_norm(combinc)
% combinc - Oringinal Data
[m,n]=size(combinc);
for j=1:n
norm_matrix(:,j)=combinc(:,j)/norm(combinc(:,j));
end
(3)将整合路径分布成原始的组合路径,即花纹设计方案的组合
function rou=translaterou(routes,theta,x,bb,cc)
[m,n]=size(routes);
rou=[];rou_rest=[];
for i=1:m
if routes(i,1)<5
o=routes(i,1);
else
o=fix(routes(i,1)/5);
end
p=mod(routes(i,1),5);
if p==0
p=5;
end
rou1=[theta(o),x(p)];
rou=[rou;rou1];
end
for i=1:m
rou2=[bb(routes(i,2)),cc(routes(i,3))];
rou_rest=[rou_rest;rou2];
end
rou=[rou,rou_rest];
(4)Topsis 法:取最优可行解
function [sf,index]=topsis(weightednorm)
[m,n]=size(weightednorm);
c_positive=max(weightednorm);
c_negetive=min(weightednorm);
for i=1:m
s_positive(i)=norm(weightednorm(i,:)-c_positive);
s_negetive(i)=norm(weightednorm(i,:)-c_negetive);
end
figure=s_negetive./(s_negetive+s_positive);
[sf,index]=sort(figure,'descend');
(5)根据车辆类型、道路状况、使用需求组合加权得出指标矩阵
function [all_target,target]=allt(car,conditions,needs)
car=0.4*car;
conditions=0.2*conditions;
needs=0.4*needs;
part=[];all_target=[];index0=[];index=[];
for i=1:5
for j=1:4
part1(j,:)=car(i,:)+conditions(j,:);
index1(j,:)=[i,j];
end
part=[part;part1];
index0=[index0;index1];
end
for i=1:20
for j=1:4
part2(j,:)=part(i,:)+needs(j,:);
index2(j,:)=[index0(i,:),j];
end
all_target=[all_target;part2];
index=[index;index2];
end
target=3*all_target;
all_target=[target,index];
全部论文及程序请见下方“ 只会建模 QQ名片” 点击QQ名片即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/292561.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

南京观海微电子---Vitis HLS的工作机制——Vitis HLS教程

1. 前言 Vitis HLS&#xff08;原VivadoHLS&#xff09;是一个高级综合工具。用户可以通过该工具直接将C、 C编写的函数翻译成HDL硬件描述语言&#xff0c;最终再映射成FPGA内部的LUT、DSP资源以及RAM资源等。 用户通过Vitis HLS&#xff0c;使用C/C代码来开发RTL IP核&#x…

前端优化gzip

gzip是GNUzip的缩写&#xff0c;是一种文件的压缩格式&#xff08;也可以说是若干种文件压缩程序&#xff09;&#xff0c;类似的压缩格式还有compress&#xff08;webpack&#xff09;&#xff0c;deflate等 主要用于组件的压缩 压缩的话主要分为两种&#xff0c; 服务器在…

TCP网络协议栈和Posix网络部分API总结

文章目录 Posix网络部分API综述TCP协议栈通信过程TCP三次握手和四次挥手&#xff08;看下图&#xff09;三次握手常见问题&#xff1f;为什么是三次握手而不是两次&#xff1f;三次握手和哪些函数有关&#xff1f;TCP的生命周期是从什么时候开始的&#xff1f; 四次挥手通信状态…

强化基础-Java-泛型基础

什么是泛型&#xff1f; 泛型其实就参数化类型&#xff0c;也就是说这个类型类似一个变量是可变的。 为什么会有泛型&#xff1f; 在没有泛型之前&#xff0c;java中是通过Object来实现泛型的功能。但是这样做有下面两个缺陷&#xff1a; 1 获取值的时候必须进行强转 2 没有…

005 高并发内存池_CentralCache设计

​&#x1f308;个人主页&#xff1a;Fan_558 &#x1f525; 系列专栏&#xff1a;高并发内存池 &#x1f339;关注我&#x1f4aa;&#x1f3fb;带你学更多知识 文章目录 前言本文重点一、构建CentralCache结构二、运用慢开始反馈调节算法三、完成向CentralCache中心缓存申请四…

【linux】AMD GPU和NVIDIA GPU驱动安装

AMD GPUs - Radeon™ PRO W7900的驱动安装过程 要在Linux系统上安装AMD的Radeon™ PRO W7900显卡驱动程序&#xff0c;通常需要执行以下步骤。以下示例基于Ubuntu系统&#xff1b;其他Linux发行版的具体步骤可能有所不同。 1. 更新系统 打开一个终端窗口&#xff0c;并输入…

Thread 之start 和run 的区别

Java Thread 之start 和run 的区别 用start方法来启动线程&#xff0c;真正实现了多线程运行&#xff0c;这时无需等待run方法体代码执行完毕而直接继续执行下面的代码。通过调用Thread类的start()方法来启动一个线程&#xff0c;这时此线程处于就绪&#xff08;可运行&#x…

自然语言处理3(NLP)—— 机器学习

1. 自然语言处理在机器学习领域的主要任务 自然语言处理&#xff08;NLP&#xff09;在机器学习领域中扮演着至关重要的角色&#xff0c;旨在使计算机能够理解、解释和生成人类语言。以下是NLP在机器学习领域中的主要任务及其分类方法&#xff1a; 1.1 按照功能类型分类 1.1.…

详解JAVA程序调优

目录 1.概述 2.命令 2.1.查看JAVA进程 2.2.查看虚拟机状态 2.3.查看线程的情况 3.工具 3.1.jconsole 3.2.jvisualVM 4.实战场景 1.概述 在实际工作中我们难免会遇见程序执行慢、线程死锁等一系列的问题&#xff0c;这时候就需要我们定位具体问题然后来解决问题了。所…

政安晨:【深度学习神经网络基础】(一)—— 逐本溯源

政安晨的个人主页&#xff1a;政安晨 欢迎 &#x1f44d;点赞✍评论⭐收藏 收录专栏: 政安晨的机器学习笔记 希望政安晨的博客能够对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff01; 与计算机一样的古老历史 神经网络的出现可追溯到20世纪40年…

LeetCode101:对称二叉树

题目描述 给你一个二叉树的根节点 root &#xff0c; 检查它是否轴对称。 代码 递归 class Solution { public:bool compare(TreeNode* left, TreeNode* right) {if (left nullptr && right ! nullptr) return false;else if (left ! nullptr && right nul…

基于Matlab的血管图像增强算法,Matlab实现

博主简介&#xff1a; 专注、专一于Matlab图像处理学习、交流&#xff0c;matlab图像代码代做/项目合作可以联系&#xff08;QQ:3249726188&#xff09; 个人主页&#xff1a;Matlab_ImagePro-CSDN博客 原则&#xff1a;代码均由本人编写完成&#xff0c;非中介&#xff0c;提供…

学习鸿蒙基础(9)

目录 一、鸿蒙国际化配置 二、鸿蒙常用组件介绍 三、鸿蒙像素单位介绍 四、鸿蒙布局介绍 1、Row与Column线性布局 2、层叠布局-Stack 3、弹性布局 4、栅格布局 5、网格布局 一、鸿蒙国际化配置 base目录下为默认的string。en_US对应美国的。zh_CN对应中国的。新增一个s…

ActiveMQ Artemis 系列| High Availability 主备模式(消息复制) 版本2.19.1

一、ActiveMQ Artemis 介绍 Apache ActiveMQ Artemis 是一个高性能的开源消息代理&#xff0c;它完全符合 Java Message Service (JMS) 2.0 规范&#xff0c;并支持多种通信协议&#xff0c;包括 AMQP、MQTT、STOMP 和 OpenWire 等。ActiveMQ Artemis 由 Apache Software Foun…

小白从0学习ctf(web安全)

文章目录 前言一、baby lfi&#xff08;bugku-CTF&#xff09;1、简介2、解题思路1、解题前置知识点2、漏洞利用 二、baby lfi 2&#xff08;bugku-CTF&#xff09;1.解题思路1、漏洞利用 三、lfi&#xff08;bugku CTF&#xff09;1、解题思路1、漏洞利用 总结 前言 此文章是…

瓷砖通铺选择亮面还是哑光?了解这6点不难选。福州中宅装饰,福州装修

选择瓷砖通铺亮面还是哑光&#xff0c;可以从多个角度来考虑&#xff1a; ①空间感觉 亮面瓷砖通常会使空间看起来更加宽敞和明亮&#xff0c;而哑光瓷砖则给人大气、稳重的感觉。如果希望让空间显得更加宽敞&#xff0c;亮面瓷砖是一个不错的选择。 ②清洁与维护 亮面瓷砖更…

云电脑安全性怎么样?企业如何选择安全的云电脑

云电脑在保障企业数字资产安全方面&#xff0c;采取了一系列严谨而全面的措施。随着企业对于数字化转型的深入推进&#xff0c;数字资产的安全问题日益凸显&#xff0c;而云电脑作为一种新兴的办公模式&#xff0c;正是为解决这一问题而生。云电脑安全吗&#xff1f;可以放心使…

React系列之合成事件与事件处理机制

文章目录 React事件处理机制原生事件的事件机制事件代理&#xff08;事件委托&#xff09; 合成事件使用合成事件目的合成事件原生事件区别事件池 原生事件和React事件的执行顺序e.stopPropagation() React17事件机制的修改 React事件处理机制 react 事件机制基本理解&#xf…

C++ :STL中deque的原理

deque的结构类似于哈希表&#xff0c;使用一个指针数组存储固定大小的数组首地址&#xff0c;当数据分布不均匀时将指针数组内的数据进行偏移&#xff0c;桶不够用的时候会像vector一样扩容然后将之前数组中存储的指针拷贝过来&#xff0c;从原理可以看出deque的性能是非常高的…

docker部署-RabbitMq

1. 参考 RabbitMq官网 docker官网 2. 拉取镜像 这里改为自己需要的版本即可&#xff0c;下面容器也需要同理修改 docker pull rabbitmq:3.12-management3. 运行容器 docker run \ --namemy-rabbitmq-01 \ -p 5672:5672 \ -p 15672:15672 \ -d \ --restart always \ -…