一篇讲明白 Hadoop 生态的三大部件

文章目录

  • 每日一句正能量
  • 前言
  • 01 HDFS
  • 02 Yarn
  • 03 Hive
  • 04 HBase
  • 05 Spark及Spark Streaming
  • 关于作者
  • 推荐理由
  • 后记
  • 赠书活动

每日一句正能量

黎明时怀着飞扬的心醒来,致谢爱的又一天,正午时沉醉于爱的狂喜中休憩,黄昏时带着感恩归家,然后在内心为所爱的祈祷中入眠,让赞美的歌谣停留在唇间。

前言

随着大数据时代的来临,处理和分析海量数据成为了一项重要的挑战。为了应对这一挑战,Hadoop生态系统应运而生。Hadoop生态系统是一个开源的、可扩展的解决方案,它由三大核心部件组成,分别是Hadoop分布式文件系统(HDFS)、Hadoop分布式计算框架(MapReduce)和Hadoop分布式存储和计算平台(YARN)。这三个部件共同协作,提供了一个高效和可靠的大数据处理平台。本文将对Hadoop生态系统的这三大部件进行详细解析,以帮助读者更好地理解Hadoop生态系统的工作原理和优势。

进入大数据阶段就意味着进入NoSQL阶段,更多的是面向OLAP场景,即数据仓库、BI应用等。
大数据技术的发展并不是偶然的,它的背后是对于成本的考量。集中式数据库或者基于MPP架构的分布数据库往往采用的都是性能稳定但价格较为昂贵的小型机、一体机或者PC服务器等,扩展性相对较差;而大数据计算框架可以基于价格低廉的普通的硬件服务器构建,并且理论上支持无限扩展以支撑应用服务。

在大数据领域中最有名的就是 Hadoop 生态,总体来看,它主要由三部分构成:底层文件存储系统 HDFS(Hadoop Distributed File System,Hadoop 分布式文件系统)、资源调度计算框架 Yarn(Yet Another Resource Negotiator,又一个资源协调者)以及基于 HDFS 与 Yarn的上层应用组件,例如 HBase、Hive 等。一个典型的基于 Hadoop 的应用如下图所示。
在这里插入图片描述

▲图  一个典型的 Hadoop 应用

01 HDFS

HDFS 被设计成适合运行在通用硬件(Commodity Hardware)上的分布式文件系统。它和现有的分布式文件系统有很多共同点,例如典型的 Master-Slave 架构(这里不准备展开介绍),也有不同点,HDFS 是一个具有高度容错性的系统,适合部署在廉价的机器上。关于HDFS 这里主要想说两点,默认副本数的设置以及机架感知(Rack Awareness)。

HDFS 默认副本数是 3,这是因为 Hadoop 有着高度的容错性,从数据冗余以及分布的角度来看,需要在同一机房不同机柜以及跨数据中心进行数据存储以保证数据最大可用。因此,为了达到上述目的,数据块需要至少存放在同一机房的不同机架(2 份)以及跨数据中心的某一机架(1 份)中,共 3 份数据。

机架感知的目的是在计算中尽量让不同节点之间的通信能够发生在同一个机架之 内,而不是跨机架,进而减少分布式计算中数据在不同的网络之间的传输,减少网络带 宽资源的消耗。例如当集群发生数据读取的时候,客户端按照由近到远的优先次序决定 哪个数据节点向客户端发送数据,因为在分布式框架中,网络 I/O 已经成为主要的性能瓶颈。

只有深刻理解了这两点,才能理解为什么 Hadoop 有着高度的容错性。高度容错性是Hadoop 可以在通用硬件上运行的基础。

02 Yarn

Yarn 是继 Common、HDFS、MapReduce 之 后 Hadoop 的又一个子项目, 它是在MapReduceV2 中提出的。

在 Hadoop1.0 中,JobTracker 由资源管理器(由 TaskScheduler 模块实现)和作业控制 (由 JobTracker 中多个模块共同实现)两部分组成。

在 Hadoop1.0 中,JobTracker 没有将资源管理相关功能与应用程序相关功能拆分开,逐 渐成为集群的瓶颈,进而导致集群出现可扩展性变差、资源利用率下降以及多框架支持不 足等多方面的问题。

在 MapReduceV2 中,Yarn 负责管理 MapReduce 中的资源(内存、CPU 等)并且将其 打包成 Container。这样可以使 MapReduce 专注于它擅长的数据处理任务,而不需要考虑资源调度。这种松耦合的架构方式实现了 Hadoop 整体框架的灵活性。

03 Hive

Hive 是基于Hadoop 的数据仓库基础构架,它利用简单的 SQL 语句(简称 HQL)来查询、分析存储在 HDFS 中的数据,并把 SQL 语句转换成 MapReduce 程序来进行数据的处理。Hive与传统的关系型数据库的主要区别体现在以下几点。

  • 存储的位置, Hive 的数据存储在 HDFS 或者 HBase 中,而后者的数据一般存储在裸设备或者本地的文件系统中,由于 Hive 是基于 HDFS 构建的,那么依赖 HDFS 的容错特性,Hive 中的数据表天然具有冗余的特点。

  • 数据库更新, Hive 是不支持更新的,一般是一次写入多次读写(这部分从 Hive 0.14之后开始支持事务操作,但是约束比较多),但是由于 Hive 是基于 HDFS 作为底层存储的, 而 HDFS 的读写不支持事务特性,因此 Hive 的事务支持必然需要拆分数据文件以及日志文 件才能支持事务的特性。

  • 执行 SQL 的延迟,Hive 的延迟相对较高,因为每次执行都需要将 SQL 语句解析成MapReduce 程序。

  • 数据的规模上,Hive 一般是 TB 级别,而后者规模相对较小。

  • 可扩展性上,Hive 支持 UDF、UDAF、UDTF,后者相对来说可扩展性较差。

04 HBase

HBase(Hadoop Database)是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统。它底层的文件系统使用 HDFS, 使用ZooKeeper 来管理集群的 HMaster 和各RegionServer 之间的通信,监控各RegionServer 的状态,存储各 Region 的入口地址等。

  1. 特点
    HBase 是 Key-Value 形式的数据库(类比 Java 中的 Map)。既然是数据库那肯定就有 表,HBase 中的表大概有以下几个特点。

1)大:一个表可以有上亿行,上百万列(列多时,插入变慢)。

2)面向列:面向列(族)的存储和权限控制,列(族)独立检索。

3)稀疏:对于空(null)的列,并不占用存储空间,因此,表可以设计得非常稀疏。

4)每个单元格中的数据可以有多个版本,默认情况下版本号自动分配,是单元格插入 时的时间戳。

5)HBase 中的数据都是字节,没有类型定义具体的数据对象(因为系统需要适应不同 类型的数据格式和数据源,不能预先严格定义模式)。

这里需要注意的是,HBase 也是基于 HDFS,所以也具有默认 3 个副本、数据冗余的特 点。此外 HBase 也是利用 WAL 的特点来保证数据读写的一致性。

  1. 存储
    HBase 采用列式存储方式进行数据的存储。传统的关系型数据库主要是采用行式存储 的方式进行数据的存储,数据读取的特点是按照行的粒度从磁盘上读取数据记录,然后根 据实际需要的字段数据进行处理,如果表的字段数量较多,但是需要处理的字段较少(特 别是聚合场景),由于行式存储的底层原理,仍然需要以行(全字段)的方式进行数据的查 询。在这个过程中,应用程序所产生的磁盘 I/O、内存要求以及网络 I/O 等都会造成一定的 浪费;而列式存储的数据读取方式主要是按照列的粒度进行数据的读取,这种按需读取的 方式减少了应用程序在数据查询时所产生的磁盘 I/O、内存要求以及网络 I/O。

此外,由于相同类型的数据被统一存储,因此在数据压缩的过程中压缩算法的选用以 及效率将会进一步加强,这也进一步降低了分布式计算中对于资源的要求。

列式存储的方式更适合 OLAP 型的应用场景,因为这类场景具有数据量较大以及查询字段较少(往往都是聚合类函数)的特点。例如最近比较火的 ClickHouse 也是使用列式存储的方式进行数据的存储。

05 Spark及Spark Streaming

Spark 由 Twitter 公司开发并开源,解决了海量数据流式分析的问题。Spark 首先将数据 导入 Spark 集群,然后通过基于内存的管理方式对数据进行快速扫描,通过迭代算法实现 全局 I/O 操作的最小化,达到提升整体处理性能的目的。这与 Hadoop 从“计算”找“数据” 的实现思路是类似的,通常适用于一次写入多次查询分析的场景。

Spark Streaming 是基于 Spark 的一个流式计算框架,它针对实时数据进行处理和控制, 并可以将计算之后的结果写入 HDFS。它与当下比较火的实时计算框架 Flink 类似,但是二者在本质上是有区别的,因为 Spark Streaming 是基于微批量(Micro-Batch)的方式进行数据处理,而非一行一行地进行数据处理。

关于作者

李杨,资深数据架构师,在数据相关领域有10年以上工作经验。头部保险资管公司科技平台交易系统团队开发组负责人,负责多个应用以及数据平台的建设、优化以及迁移工作。曾担任某数据公司技术合伙人,负责多个金融机构的数据仓库或数据平台相关的工作。《企业级数据架构:核心要素、架构模型、数据管理与平台搭建》作者。

本文摘编于《企业级数据架构:核心要素、架构模型、数据管理与平台搭建》作者。(书号:9787111746829),经出版方授权发布,转载请标明文章出处。

推荐理由

一部从企业架构视角系统讲解企业级数据架构的著作,系统梳理和阐述了企业架构的基础知识,以及数据架构的组成要素、架构模型、数据治理和数据资产管理的理论知识。
在这里插入图片描述

后记

本文详细介绍了Hadoop生态系统的三大核心部件:Hadoop分布式文件系统(HDFS)、Hadoop分布式计算框架(MapReduce)和Hadoop分布式存储和计算平台(YARN)。通过这三个部件的协作,Hadoop生态系统能够实现高效、可扩展的大数据处理和分析。

首先,我们了解了HDFS,它为海量数据的存储提供了可靠的解决方案。HDFS采用分布式存储的方式,将数据划分为块并在集群中进行分布存储,从而实现了数据的高可用性和高吞吐量。

其次,我们介绍了MapReduce框架。MapReduce是一种分布式计算模型,能够将大规模的数据分割成小块,并通过并行处理来提高计算速度。通过Map和Reduce两个阶段的任务分配和结果汇总,MapReduce能够有效地进行数据处理和分析。

最后,我们了解了YARN平台。YARN是Hadoop的资源管理系统,它负责集群中的资源调度和任务管理。YARN将计算和存储分离,使得Hadoop集群能够更好地适应不同类型的应用需求,并提高集群资源的利用率。

通过研究和理解Hadoop生态系统的这三大部件,我们可以更好地利用Hadoop生态系统来应对大数据挑战。无论是数据存储、计算还是资源管理,Hadoop生态系统提供了一套完整的解决方案,帮助企业和个人实现高效的大数据处理和分析。随着技术不断发展,Hadoop生态系统也在不断演进和壮大,为大数据行业的发展做出了巨大贡献。相信通过不断探索和实践,Hadoop生态系统将在未来的数据世界中发挥更加重要的作用。

赠书活动

🎁本次送书1~4本,【取决于阅读量,阅读量越多,送的越多】👈
⌛️活动时间:截止到2024年4月12日
✳️参与方式:关注博主+三连(点赞、收藏、评论)

转载自:https://blog.csdn.net/u014727709/article/details/137130937
欢迎 👍点赞✍评论⭐收藏,欢迎指正

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/292772.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Redis持久化 RDB AOF

前言 redis的十大类型终于告一段落了,下面我们开始redis持久化新篇章 为啥需要持久化呢? 我们知道redis是挡在mysql前面的带刀侍卫 是在内存中的,假如我们的redis宕机了,难道数据直接冲入mysql??? 这显然是不可能的,mysql肯定扛不住这样的场景,所以我们有了redis持久化策略…

Linux 进程信号:产生信号

目录 一、通过终端按键产生信号 1、signal()函数 2、核心转储 3、ulmit命令 二、调用系统函数向进程发信号 1、kill()函数 2、raise()函数 3、abort()函数 三、发送信号的过程 读端关闭、写端继续写入的情况 如何理解软件条件给进程发送信号: 四、软件条件产生信…

【PythonGIS】Python实现批量导出面矢量要素(单个多面矢量->多个单面矢量)

可怜的我周六还在工作,已经很久没更新过博客了,今天正好有空就和大家分享一下。今天给大家带来的是使用Python将包含多个面要素/线要素的矢量批量导出单个要素的矢量,即一个要素一个矢量文件。之前写过多个矢量文件合并成一个矢量文件的博文&…

(一)kafka实战——kafka源码编译启动

前言 本节内容是关于kafka消息中间键的源码编译,并通过idea工具实现kafka服务器的启动,使用的kafka源码版本是3.6.1,由于kafka源码是通过gradle编译的,以及服务器是通过scala语言实现,我们要预先安装好gradle编译工具…

HarmonyOS像素转换-如何使用像素单位设置组件的尺寸。

1 卡片介绍 基于像素单位,展示了像素单位的基本知识与像素转换API的使用。 2 标题 像素转换(ArkTS) 3 介绍 本篇Codelab介绍像素单位的基本知识与像素单位转换API的使用。通过像素转换案例,向开发者讲解了如何使用像素单位设…

【系统架构师】-第13章-层次式架构设计

层次式体系结构设计是将系统组成一个层次结构,每一层 为上层服务 ,并作为下层客户。 在一些层次系统中,除了一些精心挑选的输出函数外, 内部的层接口只对相邻的层可见 。 连接件通过决定层间如何交互的协议来定义,拓扑…

视频声音生成字幕 pr生成视频字幕 以及字幕乱码的解决

目录 目录 1、首先把要生成字幕的视频拖入以创建序列 2、点击工具栏的 窗口 选择 文本 3、选择字幕下的 转录序列 4、选择输出的语言(主要看视频声音说的是啥语言) 5、音轨 选择 音频1​编辑 6、点击转录 7、等待转录文本 8、点击创建说明性字幕按…

jsp中设置动态时间

第一步 在head中写入meta <head><meta charset"UTF-8" http-equiv"Refresh" content"1"> </head> 第二步在head中写入函数 <head><meta charset"UTF-8" http-equiv"Refresh" content"…

CSS实现元素边框渐变动画

前言&#xff1a; 边框流动动画是一种非常常见的效果&#xff0c;能够让网页看起来更加生动有趣。通过使用 CSS3&#xff0c;我们可以轻松地实现这种动画效果。本文将介绍如何使用 CSS3 实现边框流动效果&#xff0c;下面一起来看看吧。 示例图&#xff1a;边框是动画持续变化的…

Unity数独完整源码

支持的Unity版本&#xff1a;2018.1或更高。 这是一套完整且高效的数独源码&#xff0c;默认是9x9&#xff0c;有上千种关卡文件&#xff0c;4种难度&#xff0c;内有关卡编辑器&#xff0c;可扩展至4x4、6x6的关卡&#xff0c;还有英文文档对源码各方面可配置的地方进行说明&…

二. CUDA编程入门-Stream与Event

目录 前言0. 简述1. 执行一下我们的第九个CUDA程序2. Stream是什么3. Streams实验(单流vs多流)4. 如何隐藏延迟(memory)5. 如何隐藏延迟(kernel)6. 如何隐藏延迟(kernelmemory)7. 代码分析总结参考 前言 自动驾驶之心推出的 《CUDA与TensorRT部署实战课程》&#xff0c;链接。记…

第3章.引导ChatGPT精准角色扮演:高效输出专业内容

角色提示技术 角色提示技术&#xff08;role prompting technique&#xff09;&#xff0c;是通过模型扮演特定角色来产出文本的一种方法。用户为模型设定一个明确的角色&#xff0c;它就能更精准地生成符合特定上下文或听众需求的内容。 比如&#xff0c;想生成客户服务的回复…

【Linux】进程管理:进程及概念精讲

前言&#xff1a;本节内容包含进程管理操作的各种基础概念精讲&#xff0c;同时部分板块包含Linux操作系统与一般操作系统的概念对比。不仅包含“书面概念”&#xff0c;还包含详细操作以及通俗讲解。 目录 一、进程概念引入 二、进程的描述与组织&#xff1a;进程控制块&…

vue watch 深度监听

vue2文档&#xff1a;API — Vue.js vue3文档&#xff1a;侦听器 | Vue.js watch 可以用来监听页面中的数据&#xff0c;但如果监听的源是对象或数组&#xff0c;则使用深度监听&#xff0c;强制深度遍历源&#xff0c;以便在深度变更时触发回调。 一&#xff0c;监听 <t…

VS2019连接MySQL

VS2019连接MySQL 下载MySQL Connector/C配置头文件&#xff0c;库文件路径配置头文件路径配置库的路径复制dll文件 MySQL的用户设置将权限赋值给新用户 编写代码往数据库写入 老师布置的作业让我们用VS2019连接MySQL实现一个小型的日志系统&#xff0c;中间踩了很多的坑&#x…

RecyclerView 调用 notifyItemInserted 自动滚动到底部的问题

项目中发现一个奇怪的现象 RecyclerView 加载完数据以后&#xff0c;调用 notifyItemInserted 方法&#xff0c;RecyclerView 会滑动到底部。 简化后的效果图&#xff1a; 因为这个 RecyclerView 的适配器有一个 FootViewHolder&#xff0c;所以怀疑是 FootViewHolder 的问题…

MTU/TCPMSS/VLAN/ACCESS/TRUNK/HYBRID

MTU RFC标准定义以太网的默认MTU值为1500 最小64字节是为了保证最极端的冲突能被检测到&#xff0c;64字节是能被检测到的最小值&#xff1b;最大不超过1518字节是为了防止过长的帧传输时间过长而占用共享链路太长时间导致其他业务阻塞。所以规定以太网帧大小为64~1518字节&am…

java文件File和IO流(二)-- IO流,递归,数据流,打印流,转换流等等

IO流 IO流之数据流 在IO流中&#xff0c;可以通过DataInputStream和DataOutputStream字节流直接操作基本数据类型和字符串 DataOutputStream import java.io.*;//TODO 数据流&#xff0c;简单的说&#xff0c;就是容许字节流直接操作基本数据类型和字符串。 public class D…

Golang-Gorm-快速上手

Gorm文档 GORM文档地址 安装依赖 go get -u "gorm.io/driver/mysql"go get -u "gorm.io/gorm"连接数据库 默认连接方式 func main() {// 参考 https://github.com/go-sql-driver/mysql#dsn-data-source-name 获取详情dsn : "user:passtcp(127.0.0…

【C++第五课-C/C++内存管理】C/C++的内存分布、new/delete、new和delete的实现原理

目录 C/C的内存分布new/deletenew内置类型使用new自定义类型使用newnew失败 delete内置类型使用delete自定义类型使用delete new和delete的实现原理new[] 和delete[]的补充知识 定位new&#xff08;了解&#xff09;常见面试题 C/C的内存分布 频繁的new/delete堆容易产生内存碎…