12.平衡二叉树
给定一个二叉树,判断它是否是 平衡二叉树?
平衡二叉树是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。
示例 1:
输入:root = [3,9,20,null,null,15,7]
输出:true
示例 2:
输入:root = [1,2,2,3,3,null,null,4,4]
输出:false
示例 3:
输入:root = []
输出:true
这里强调一波概念:
- 二叉树节点的深度:指从根节点到该节点的最长简单路径边的条数。
- 二叉树节点的高度:指从该节点到叶子节点的最长简单路径边的条数。
但leetcode中强调的深度和高度很明显是按照节点来计算的,如图:
关于根节点的深度究竟是1 还是 0,不同的地方有不一样的标准,leetcode的题目中都是以节点为一度,即根节点深度是1。但维基百科上定义用边为一度,即根节点的深度是0,我们暂时以leetcode为准(毕竟要在这上面刷题)。
因为求深度可以从上到下去查 所以需要前序遍历(中左右),而高度只能从下到上去查,所以只能后序遍历(左右中)
为什么二叉树的最大深度也用的后序遍历?
因为代码的逻辑其实是求的根节点的高度,而根节点的高度就是这棵树的最大深度,所以才可以使用后序遍历。
递归
既然要求比较高度,必然是要后序遍历。
- 明确递归函数的参数和返回值
参数:当前传入节点。 返回值:以当前传入节点为根节点的树的高度。
那么如何标记左右子树是否差值大于1呢?
如果当前传入节点为根节点的二叉树已经不是二叉平衡树了,还返回高度的话就没有意义了。
所以如果已经不是二叉平衡树了,可以返回-1 来标记已经不符合平衡树的规则了。
// -1 表示已经不是平衡二叉树了,否则返回值是以该节点为根节点树的高度
int getHeight(TreeNode* node)
2.明确终止条件
递归的过程中依然是遇到空节点了为终止,返回0,表示当前节点为根节点的树高度为0。
if (node == NULL) {return 0;
}
3.明确单层递归的逻辑
如何判断以当前传入节点为根节点的二叉树是否是平衡二叉树呢?当然是其左子树高度和其右子树高度的差值。
分别求出其左右子树的高度,然后如果差值小于等于1,则返回当前二叉树的高度,否则返回-1,表示已经不是二叉平衡树了。
int leftHeight = getHeight(node->left); // 左
if (leftHeight == -1) return -1;
int rightHeight = getHeight(node->right); // 右
if (rightHeight == -1) return -1;int result;
if (abs(leftHeight - rightHeight) > 1) { // 中result = -1;
} else {result = 1 + max(leftHeight, rightHeight); // 以当前节点为根节点的树的最大高度
}return result;
//return abs(leftHeight - rightHeight) > 1 ? -1 : 1 + max(leftHeight, rightHeight);//精简后
class Solution {
public:// 返回以该节点为根节点的二叉树的高度,如果不是平衡二叉树了则返回-1int getHeight(TreeNode* node) {if (node == NULL) {return 0;//表示当前节点为根节点的树高度为0}int leftHeight = getHeight(node->left);if (leftHeight == -1) return -1;int rightHeight = getHeight(node->right);if (rightHeight == -1) return -1;return abs(leftHeight - rightHeight) > 1 ? -1 : 1 + max(leftHeight, rightHeight);}bool isBalanced(TreeNode* root) {return getHeight(root) == -1 ? false : true;}
};
迭代
在二叉树最大深度中,可以使用层序遍历来求深度,但是就不能直接用层序遍历来求高度了,这就体现出求高度和求深度的不同。
本题的迭代方式可以先定义一个函数,专门用来求高度。
这个函数通过栈模拟的后序遍历找每一个节点的高度(其实是通过求传入节点为根节点的最大深度来求的高度)
【没理解!】
// cur节点的最大深度,就是cur的高度
int getDepth(TreeNode* cur){stack<TreeNode> st;if(st != NULL) st.push(cur);int depth = 0;//记录深度int result = 0;while(!st.empty()){TreeNode* node = st.top();if(node != NULL){st.push(node);//中st.push(NULL);depth++;if(node->right) st.push(node->right);//右 (空节点不入栈)if(node->left) st.push(node->left);//左 (空节点不入栈)}else{st.pop();//移除NULL标志值,当遇到一个NULL值时,说明当前节点的子节点已经被完全访问过了,所以需要将其从栈中移除。node = st.top();//第二次st.pop()操作是为了移除当前节点st.pop();depth--;}result = result > depth ? reuslt : depth;//更新返回值}return result;
}
然后再用栈来模拟后序遍历,遍历每一个节点的时候,再去判断左右孩子的高度是否符合,代码如下:
bool isBalanced(TreeNode* root) {stack<TreeNode*> st;if (root == NULL) return true;st.push(root);while (!st.empty()) {TreeNode* node = st.top(); // 中st.pop();if (abs(getDepth(node->left) - getDepth(node->right)) > 1) { // 判断左右孩子高度是否符合return false;}if (node->right) st.push(node->right); // 右(空节点不入栈)if (node->left) st.push(node->left); // 左(空节点不入栈)}return true;
}
当然此题用迭代法,其实效率很低,因为没有很好的模拟回溯的过程,所以迭代法有很多重复的计算。
虽然理论上所有的递归都可以用迭代来实现,但是有的场景难度可能比较大。
例如:都知道回溯法其实就是递归,但是很少人用迭代的方式去实现回溯算法!
因为对于回溯算法已经是非常复杂的递归了,如果再用迭代的话,就是自己给自己找麻烦,效率也并不一定高。
总结
1.求二叉树深度 和 二叉树高度的差异,求深度适合用前序遍历,而求高度适合用后序遍历。
2.迭代法没太理解:
通过栈模拟的后序遍历找每一个节点的高度?
3.递归法:对于空节点返回0;对于高度差超过1返回-1;否则就返回当前节点的最大高度。最后判断返回根节点的值是-1,还是最大高度,进行判断true或false。
13.二叉树所有路径
给你一个二叉树的根节点 root
,按 任意顺序 ,返回所有从根节点到叶子节点的路径。
叶子节点 是指没有子节点的节点。
示例 1:
输入:root = [1,2,3,null,5]
输出:["1->2->5","1->3"]
示例 2:
输入:root = [1]
输出:["1"]
思路
这道题目要求从根节点到叶子的路径,所以需要前序遍历,这样才方便让父节点指向孩子节点,找到对应的路径。
在这道题目中将第一次涉及到回溯,因为我们要把路径记录下来,需要回溯来回退一个路径再进入另一个路径。
前序遍历以及回溯的过程如图:
我们先使用递归的方式,来做前序遍历。要知道递归和回溯就是一家的,本题也需要回溯
递归
- 递归函数参数以及返回值
要传入根节点,记录每一条路径的path,和存放结果集的result,这里递归不需要返回值,代码如下:
void traversal(TreeNode* cur, vector<int>& path, vector<string>& result)
2.确定递归终止条件
在写递归的时候都习惯了这么写:
if (cur == NULL) {终止处理逻辑
}
但是本题的终止条件这样写会很麻烦,因为本题要找到叶子节点,就开始结束的处理逻辑了(把路径path放进result里)。
那么什么时候算是找到了叶子节点? 是当 cur不为空,其左右孩子都为空的时候,就找到叶子节点。
所以本题的终止条件是:
if (cur->left == NULL && cur->right == NULL) {终止处理逻辑
}
为什么没有判断cur是否为空呢?因为下面的逻辑可以控制空节点不入循环。
再来看一下终止处理的逻辑。
这里使用vector 结构path来记录路径,所以要把vector 结构的path转为string格式,再把这个string 放进 result里。
那么为什么使用了vector 结构来记录路径呢? 因为在下面处理单层递归逻辑的时候,要做回溯,使用vector方便来做回溯。
有些人的代码也没有回溯,其实是有回溯的,只不过隐藏在函数调用时的参数赋值里
if (cur->left == NULL && cur->right == NULL) { // 遇到叶子节点string sPath;//声明一个空字符for (int i = 0; i < path.size() - 1; i++) { // 将path里记录的路径转为string格式sPath += to_string(path[i]);sPath += "->";}sPath += to_string(path[path.size() - 1]); // 记录最后一个节点(叶子节点)result.push_back(sPath); // 收集一个路径return;
}
3.确定单层递归逻辑
因为是前序遍历,需要先处理中间节点,中间节点就是我们要记录路径上的节点,先放进path中。
path.push_back(cur->val);
然后是递归和回溯的过程,上面说过没有判断cur是否为空,那么在这里递归的时候,如果为空就不进行下一层递归了。
所以递归前要加上判断语句,下面要递归的节点是否为空,如下
if (cur->left) {traversal(cur->left, path, result);
}
if (cur->right) {traversal(cur->right, path, result);
}
此时还没完,递归完,要做回溯啊,因为path 不能一直加入节点,它还要删节点,然后才能加入新的节点。
那么回溯要怎么回溯呢,一些同学会这么写,如下:
if (cur->left) {traversal(cur->left, path, result);
}
if (cur->right) {traversal(cur->right, path, result);
}
path.pop_back();
这个回溯就有很大的问题,我们知道,回溯和递归是一一对应的,有一个递归,就要有一个回溯,这么写的话相当于把递归和回溯拆开了, 一个在花括号里,一个在花括号外。
所以回溯要和递归永远在一起,世界上最遥远的距离是你在花括号里,而我在花括号外!
那么代码应该这么写:
if (cur->left) {traversal(cur->left, path, result);path.pop_back(); // 回溯
}
if (cur->right) {traversal(cur->right, path, result);path.pop_back(); // 回溯
}
回溯的意思是:对于path:1 , 2, 5;是一条路径了,那接下来要弹出5,2;再去添加 3,组成 1, 3这条新路径添加进result中。
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:void traversal(TreeNode* cur, vector<int>& path, vector<string>& result){path.push_back(cur->val);//中 中为什么写在这里,因为最后一个节点也要加入到path中 if(cur->left == nullptr && cur->right == nullptr){// 这才到了叶子节点string sPath;for(int i = 0; i < path.size() - 1; i++){sPath += to_string(path[i]);sPath += "->";}sPath += to_string(path[path.size()-1]);result.push_back(sPath);//添加进结果中return;}if(cur->left){traversal(cur->left,path,result);//左path.pop_back();//去掉数组的最后一个数据}if(cur->right){traversal(cur->right,path,result);//右path.pop_back();//去掉数组的最后一个数据} }vector<string> binaryTreePaths(TreeNode* root) {vector<string> result;vector<int> path;if(root == nullptr) return result;traversal(root,path,result);return result;}
};
精简代码:
class Solution {
private:void traversal(TreeNode* cur, string path, vector<string>& result) {//string path 每次都是复制赋值,不用使用引用path += to_string(cur->val); // 中if (cur->left == NULL && cur->right == NULL) {result.push_back(path);return;}//每次函数调用完,path依然是没有加上"->" 的,这就是回溯if (cur->left) traversal(cur->left, path + "->", result); // 左if (cur->right) traversal(cur->right, path + "->", result); // 右}public:vector<string> binaryTreePaths(TreeNode* root) {vector<string> result;string path;if (root == NULL) return result;traversal(root, path, result);return result;}
};
如上代码精简了不少,也隐藏了不少东西。
注意在函数定义的时候void traversal(TreeNode* cur, string path, vector<string>& result)
,定义的是string path
,每次都是复制赋值,不用使用引用,否则就无法做到回溯的效果。(这里涉及到C++语法知识)
那么在如上代码中,貌似没有看到回溯的逻辑,其实不然,回溯就隐藏在traversal(cur->left, path + "->", result);
中的 path + "->"
。 每次函数调用完,path依然是没有加上"->" 的,这就是回溯了。
如果改写
if (cur->left) traversal(cur->left, path + "->", result); // 左 回溯就隐藏在这里
成为:
if (cur->left) {path += "->";traversal(cur->left, path, result); // 左
}
if (cur->right) {path += "->";traversal(cur->right, path, result); // 右
}
此时就没有回溯了,这个代码就是通过不了的了。
如果想把回溯加上,就要 在上面代码的基础上,加上回溯,就可以AC了。
if (cur->left) {path += "->";traversal(cur->left, path, result); // 左path.pop_back(); // 回溯 '>'path.pop_back(); // 回溯 '-'
}
if (cur->right) {path += "->";traversal(cur->right, path, result); // 右path.pop_back(); // 回溯 '>' path.pop_back(); // 回溯 '-'
}
整体代码:
//版本二
class Solution {
private:void traversal(TreeNode* cur, string path, vector<string>& result) {path += to_string(cur->val); // 中,中为什么写在这里,因为最后一个节点也要加入到path中if (cur->left == NULL && cur->right == NULL) {result.push_back(path);return;}if (cur->left) {path += "->";traversal(cur->left, path, result); // 左path.pop_back(); // 回溯 '>'path.pop_back(); // 回溯 '-'}if (cur->right) {path += "->";traversal(cur->right, path, result); // 右path.pop_back(); // 回溯'>'path.pop_back(); // 回溯 '-'}}public:vector<string> binaryTreePaths(TreeNode* root) {vector<string> result;string path;if (root == NULL) return result;traversal(root, path, result);return result;}
};
总结
1.**可以感受出来,如果把 path + "->"
作为函数参数就是可以的,因为并没有改变path的数值,执行完递归函数之后,path依然是之前的数值(相当于回溯了)**在第一个版本中,函数参数我就使用了引用,即 vector<int>& path
,这是会拷贝地址的,所以 本层递归逻辑如果有path.push_back(cur->val);
就一定要有对应的 path.pop_back()
为什么不去定义一个 string& path
这样的函数参数呢?
path += to_string(cur->val);
每次是加上一个数字,这个数字如果是个位数,那好说,就调用一次path.pop_back()
,但如果是 十位数,百位数,千位数呢? 百位数就要调用三次path.pop_back()
,才能实现对应的回溯操作,这样代码实现就太冗余了。
所以才使用 vector 类型的path,这样方便给大家演示代码中回溯的操作。 vector类型的path,不管 每次 路径收集的数字是几位数,总之一定是int,所以就一次 pop_back就可以。
2.第二种递归的代码(形参处做了隐形回溯)虽然精简但把很多重要的点隐藏在了代码细节里,第一种递归写法虽然代码多一些,但是把每一个逻辑处理都完整的展现出来了。所以这是参数中,不带引用,不做地址拷贝,只做内容拷贝的效果。
迭代法
除了模拟递归需要一个栈,同时还需要一个栈来存放对应的遍历路径。
class Solution {
public:vector<string> binaryTreePaths(TreeNode* root) {stack<TreeNode*> treeSt;// 保存树的遍历节点stack<string> pathSt; // 保存遍历路径的节点vector<string> result; // 保存最终路径集合if (root == NULL) return result;treeSt.push(root);pathSt.push(to_string(root->val));while (!treeSt.empty()) {TreeNode* node = treeSt.top(); treeSt.pop(); // 取出节点 中string path = pathSt.top();pathSt.pop(); // 取出该节点对应的路径if (node->left == NULL && node->right == NULL) { // 遇到叶子节点result.push_back(path);}if (node->right) { // 右treeSt.push(node->right);pathSt.push(path + "->" + to_string(node->right->val));}if (node->left) { // 左treeSt.push(node->left);pathSt.push(path + "->" + to_string(node->left->val));}}return result;}
};
二叉树周总结
1.判断二叉树是否对称
本质是要比较两个树(这两个树是根节点的左右子树),遍历两棵树而且要比较内侧和外侧节点,所以准确的来说是一个树的遍历顺序是左右中,一个树的遍历顺序是右左中。
而本题的迭代法中我们使用了队列,需要注意的是这不是层序遍历,而且仅仅通过一个容器来成对的存放我们要比较的元素,认识到这一点之后就发现:用队列,用栈,甚至用数组,都是可以的。
2.树的最大深度
本题可以使用前序,也可以使用后序遍历(左右中),使用前序求的就是深度,使用后序呢求的是高度。
而根节点的高度就是二叉树的最大深度,所以本题中我们通过后序求的根节点高度来求的二叉树最大深度。
使用前序(充分表现出求深度回溯的过程)
3.树的最小深度
注意这里最小深度是从根节点到最近叶子节点的最短路径上的节点数量。注意是叶子节点。
什么是叶子节点,左右孩子都为空的节点才是叶子节点!
求二叉树的最小深度和求二叉树的最大深度的差别主要在于处理左右孩子不为空的逻辑。
4.求二叉树的节点数量
5.判断二叉树是否是平衡二叉树
二叉树节点的深度:指从根节点到该节点的最长简单路径边的条数。
二叉树节点的高度:指从该节点到叶子节点的最长简单路径边的条数。
但leetcode中强调的深度和高度很明显是按照节点来计算的。
回溯法其实就是递归
讲了这么多二叉树题目的迭代法,有的同学会疑惑,迭代法中究竟什么时候用队列,什么时候用栈?
如果是模拟前中后序遍历就用栈,如果是适合层序遍历就用队列,当然还是其他情况,那么就是 先用队列试试行不行,不行就用栈。
6.二叉树所有路径
其实回溯和递归都是相伴相生的
回溯就隐藏在traversal(cur->left, path + “->”, result);中的 path + “->”。 每次函数调用完,path依然是没有加上"->" 的,这就是回溯了
总结
二叉树的题目,都是使用了递归三部曲一步一步的把整个过程分析出来,而不是上来就给出简洁的代码。
15.左叶子之和
给定二叉树的根节点 root
,返回所有左叶子之和。
示例 1:
输入: root = [3,9,20,null,null,15,7]
输出: 24
解释: 在这个二叉树中,有两个左叶子,分别是 9 和 15,所以返回 24
思路
首先要注意是判断左叶子,不是二叉树左侧节点,所以不要上来想着层序遍历。
因为题目中其实没有说清楚左叶子究竟是什么节点,那么我来给出左叶子的明确定义:节点A的左孩子不为空,且左孩子的左右孩子都为空(说明是叶子节点),那么A节点的左孩子为左叶子节点
大家思考一下如下图中二叉树,左叶子之和究竟是多少?
其实是0,因为这棵树根本没有左叶子!
那么判断当前节点是不是左叶子是无法判断的,必须要通过节点的父节点来判断其左孩子是不是左叶子。
如果该节点的左节点不为空,该节点的左节点的左节点为空,该节点的左节点的右节点为空,则找到了一个左叶子,判断代码如下:
if (node->left != NULL && node->left->left == NULL && node->left->right == NULL) {左叶子节点处理逻辑
}
递归法
递归的遍历顺序为后序遍历(左右中),是因为要通过递归函数的返回值来累加求取左叶子数值之和。
- 确定递归函数的参数和返回值
判断一个树的左叶子节点之和,那么一定要传入树的根节点,递归函数的返回值为数值之和,所以为int。
2.确定终止条件
如果遍历到空节点,那么左叶子值一定是0
if (root == NULL) return 0;
注意,只有当前遍历的节点是父节点,才能判断其子节点是不是左叶子。 所以如果当前遍历的节点是叶子节点,那其左叶子也必定是0,那么终止条件为:
if (root == NULL) return 0;
if (root->left == NULL && root->right== NULL) return 0; //其实这个也可以不写,如果不写不影响结果,但就会让递归多进
3.确定单层递归的逻辑
当遇到左叶子节点的时候,记录数值,然后通过递归求取左子树左叶子之和,和 右子树左叶子之和,相加便是整个树的左叶子之和。
int leftValue = sumOfLeftLeaves(root->left); // 左
if (root->left && !root->left->left && !root->left->right) {leftValue = root->left->val;
}
int rightValue = sumOfLeftLeaves(root->right); // 右int sum = leftValue + rightValue; // 中
return sum;
整体代码:
class Solution {
public:int sumOfLeftLeaves(TreeNode* root) {if (root == NULL) return 0;if (root->left == NULL && root->right== NULL) return 0;int leftValue = sumOfLeftLeaves(root->left); // 左if (root->left && !root->left->left && !root->left->right) { // 左子树就是一个左叶子的情况leftValue = root->left->val;//左子叶的处理逻辑不太理解}int rightValue = sumOfLeftLeaves(root->right); // 右int sum = leftValue + rightValue; // 中return sum;}
};
迭代法
本题迭代法使用前中后序都是可以的,只要把左叶子节点统计出来,就可以了。
前序遍历:
class Solution {
public:int sumOfLeftLeaves(TreeNode* root) {stack<TreeNode*> st;if (root == NULL) return 0;st.push(root);int result = 0;while (!st.empty()) {TreeNode* node = st.top();st.pop();if (node->left != NULL && node->left->left == NULL && node->left->right == NULL) {result += node->left->val;}if (node->right) st.push(node->right);if (node->left) st.push(node->left);}return result;}
};
总结
这道题目要求左叶子之和,其实是比较绕的,因为不能判断本节点是不是左叶子节点。
**什么是左叶子节点?**首先要是叶子节点,其次叶子节点是左节点。
此时就要通过节点的父节点来判断其左孩子是不是左叶子了。
平时我们解二叉树的题目时,已经习惯了通过节点的左右孩子判断本节点的属性,而本题我们要通过节点的父节点判断本节点的属性。