SAD法(附python实现)和Siamese神经网络计算图像的视差图

1 视差图

视差图:以左视图视差图为例,在像素位置p的视差值等于该像素在右图上的匹配点的列坐标减去其在左图上的列坐标

视差图和深度图:
z = f b d z = \frac{fb}{d} z=dfb
其中 d d d 是视差, f f f 是焦距, b b b 是基线长度

image-20240322211454831

所以,视差越大 ——> 深度越小

2 传统方法

原理:是在给定窗口大小的情况下,对左图像和右图像的对应窗口进行比较,计算它们之间的绝对差的总和,从而确定最佳匹配的视差

SAD:Sum of Absolute Differences 即差的绝对值和
S A D ( x , y , d ) = ∣ w L ( x , y ) − w R ( x − d , y ) ∣ SAD(x,y,d) = |w_L(x, y) - w_R(x-d, y)| SAD(x,y,d)=wL(x,y)wR(xd,y)
大致流程:

  1. 对左图像和右图像分别进行零填充以适应窗口的边界

    为在计算这些像素的视差时,窗口可能会超出图像的范围

  2. 对于左图像的每个像素,依次遍历整个图像

  3. 对于每个像素,以其为中心取窗口大小的区域,并在右图像中搜索匹配窗口

    # 一定是减去d,因为右边图像是左边图像向右平移d个像素
    window_right = image_right[y:y + window_size, x - d:x - d + window_size]
    

    设置一个 max_disparity 来限制搜索范围

  4. 计算左图像窗口和右图像匹配窗口的绝对差的总和,即SAD值

    now_sad = np.sum(np.abs(window_left - window_right))
    
  5. 找到最小的SAD值,将对应的视差 d 保存到该像素位置

代码实现:

def sad(image_left, image_right, window_size=3, max_disparity=50):D = np.zeros_like(image_left)height = image_left.shape[0]width = image_left.shape[1]# 零填充padding = window_size // 2image_left = add_padding(image_left, padding).astype(np.float32)image_right = add_padding(image_right, padding).astype(np.float32)for y in range(height):for x in range(width):# 左边图像的窗口window_left = image_left[y:y + window_size, x:x + window_size]best_disparity = 0min_sad = float('inf')for d in range(max_disparity):if x - d < 0:continue# 一定是减去d,因为右边图像是左边图像向右平移d个像素window_right = image_right[y:y + window_size, x - d:x - d + window_size]now_sad = np.sum(np.abs(window_left - window_right))if now_sad < min_sad:min_sad = now_sadbest_disparity = d# 保存SADD[y, x] = best_disparityreturn D # 返回视差图

3 卷积方法

传统方法很慢,卷积方法避免了的嵌套循环,效率比起传统方法高了很多

利用图像卷积的思想,通过对每个候选视差值计算绝对差图像,并将其与一个均值滤波器进行卷积操作来实现视差图的计算

具体步骤如下:

  1. 对于每个候选的视差值,计算两幅图像在水平方向上的绝对差

    img_diff = np.abs(image_left - right_shifted)
    
  2. 将计算得到的绝对差图像与一个均值滤波器进行卷积操作。均值滤波器的大小应与窗口大小相匹配,用于平滑绝对差图像,从而减少噪声和不稳定性

    # 平滑均值滤波卷积核
    kernel = np.ones((window_size, window_size)) / (window_size ** 2)
    # 通过卷积运算,可以计算出每个像素邻域的总差异,也就是SAD值
    img_sad = convolve(img_diff, kernel, mode='same')  
    

    卷积的作用:

    1. 平滑处理:卷积可以用来对图像进行平滑处理,也就是降噪。当卷积核是一个均值滤波器,就可以用于计算图像中每个像素的邻域的平均值。这样可以减少图像中的随机噪声,使图像变得更加平滑
    2. 计算局部差异:在计算左图和右图之间的 SAD 值时,需要对每个像素的邻域进行操作。这可以通过卷积来实现。卷积结果中的每个像素值表示了对应的像素邻域在左图和右图之间的差异程度
  3. 对于每个像素,选择具有最小卷积结果的视差值作为最终的视差值

代码实现:

def sad_convolve(image_left, image_right, window_size=3, max_disparity=50):# 零填充padding = window_size // 2image_left = add_padding(image_left, padding).astype(np.float32)image_right = add_padding(image_right, padding).astype(np.float32)SAD = np.zeros((image_left.shape[0], image_left.shape[1], max_disparity + 1))# 卷积核kernel = np.ones((window_size, window_size)) / (window_size ** 2)# 范围很重要,要覆盖0和max_disparity才行for d in range(0, max_disparity才行 + 1):if d == 0:right_shifted = image_rightelse:right_shifted = np.zeros_like(image_right)right_shifted[:, d:] = image_right[:, :-d]img_diff = np.abs(image_left - right_shifted)# 通过卷积运算,可以计算出每个像素邻域的总差异,也就是SAD值img_sad = convolve(img_diff, kernel, mode='same')SAD[:, :, d] = img_sadD = np.argmin(SAD, axis=2) # 选出算出最小SAD的视差值return D

4 问题

块匹配方法在处理时存在一些限制,主要包括以下几点:

  1. 局部窗口匹配:块匹配方法通常只考虑局部窗口内的像素信息进行匹配,而对于同质区域,局部窗口内的像素可能非常相似,导致匹配困难

  2. 窗口大小选择:选择合适的窗口大小对于块匹配的性能至关重要。

    • 小窗口:在纹理丰富的区域,可以选择较小的窗口;但对于同质区域可能无法捕捉到同质区域的整体特征
    • 大窗口:在纹理稀疏的区域,应选择较大的窗口大小;但可能会将不同物体的特征混合在一起,导致误匹配,但较大的窗口大小会增加计算量
    窗口大小结果
    3image-20240323095500779
    7image-20240323095545339
    15image-20240323095611812

5 Siamese神经网络

Siamese神经网络由两个相同的子网络组成,这两个子网络共享相同的参数(权重和偏置)。无论输入是什么,它们都会通过相同的网络结构进行处理

  1. 特征提取:给定两个输入,它们分别通过两个子网络进行前向传播,从而得到它们的特征表示。这些特征表示捕捉了输入的关键信息
  2. 相似性评估:得到特征表示后,Siamese神经网络通过某种方式比较这两个特征表示,以确定它们之间的相似性。我们使用余弦相似度来操作

其有两种结构:

  1. 余弦相似度 (Cosine Similarity)

    • 原理:计算两个特征向量之间的夹角余弦值,范围在-1到1之间。值越接近1,表示两个向量越相似;值越接近-1,表示两个向量越不相似;值接近0表示两个向量之间没有线性关系
    • 应用:通过计算特征向量之间的余弦相似度,可以衡量它们在特征空间中的方向是否相似,其没有MLP,卷积层后直接标准化进行点乘,速度非常快,且效果也较好
  2. 学习相似性 (Learned Similarity)

    image-20240323152802625
    • 原理:需要训练一个神经网络,该网络将输入的特征向量映射到一个标量值,表示它们之间的相似性得分
    • 应用:神经网络可以学习到更复杂的特征表示,并且可以捕捉输入之间的非线性关系。但是,由于MLP的计算成本较高,会较于前者较慢

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/295718.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

openGauss学习笔记-254 openGauss性能调优-使用Plan Hint进行调优-子链接块名的hint

文章目录 openGauss学习笔记-254 openGauss性能调优-使用Plan Hint进行调优-子链接块名的hint254.1 功能描述254.2 语法格式254.3 参数说明254.4 示例 openGauss学习笔记-254 openGauss性能调优-使用Plan Hint进行调优-子链接块名的hint 254.1 功能描述 指明子链接块的名称。…

《书生·浦语大模型全链路开源开放体系》学习笔记

书生浦语大模型全链路开源开放体系-学习笔记 大模型成为发展通用人工智能的重要途径专用模型通用大模型 书生大模型开源历程InternLM2回归语言建模的本质主要亮点性能全方位提升强大的内生计算能力 从模型到应用典型流程全链条开源开放体系数据数据集获取预训练微调XTuner 评测…

【Go】四、包名、访问范围控制、标识符、运算符

文章目录 1、_2、包名3、命名大小影响可访问范围4、运算符5、获取终端输入 1、_ 下划线"_"本身在Go中是一个特殊的标识符&#xff0c;称为空标识符用于忽略某个值 1&#xff09;忽略导入的没使用的包 2&#xff09;忽略某个返回值 2、包名 main包是程序的入口包&a…

vulnhub pWnOS v2.0通关

知识点总结&#xff1a; 1.通过模块来寻找漏洞 2.msf查找漏洞 3.通过网站源代码&#xff0c;查看模块信息 环境准备 攻击机&#xff1a;kali2023 靶机&#xff1a;pWnOS v2.0 安装地址&#xff1a;pWnOS: 2.0 (Pre-Release) ~ VulnHub 在安装网址中看到&#xff0c;该靶…

IDEA无法连接虚拟机中的Redis的解决方案,无法连接Jedis,无法ping通虚拟机的解决方案

首先&#xff0c;笔者先说明一下自身的情况&#xff0c;怎么连接都连不上&#xff0c;网上的教程全部都看了一遍&#xff0c;基本上没用得上的&#xff0c;这篇文章里面的解决方案包括了笔者能在网上找到了最全面的办法总结&#xff0c;最后终于是连上了 目录 一.连接Jedis出错…

.Net Core/.Net6/.Net8 ,启动配置/Program.cs 配置

.Net Core/.Net6/.Net8 &#xff0c;启动配置/Program.cs 配置 没有废话&#xff0c;直接上代码调用 没有废话&#xff0c;直接上代码 /// <summary>/// 启动类/// </summary>public static class Mains{static IServiceCollection _services;static IMvcBuilder _…

适用于汽车导航系统的车载晶振FC-13A

用于汽车导航系统的32,768KHz耐高温车载晶振FC-13A。其实FC-13A这款车载晶振还是有很多特点的&#xff0c;FC-13A是一款尺寸为3215的32,768KHz耐高温晶振&#xff0c;FC-13A符合AEC-0200被动元件汽车级品质标准认证&#xff0c;是FC-135车载晶振设备用升级版&#xff0c;区别主…

【机器学习】数据探索(Data Exploration)---数据质量和数据特征分析

一、引言 在机器学习项目中&#xff0c;数据探索是至关重要的一步。它不仅是模型构建的基础&#xff0c;还是确保模型性能稳定、预测准确的关键。数据探索的过程中&#xff0c;数据质量和数据特征分析占据了核心地位。数据质量直接关系到模型能否从数据中提取有效信息&#xff…

【排序算法——数据结构】

文章目录 排序排序的基本概念1.插入排序2.希尔排序3.冒泡排序4.快速排序5.简单排序6.堆排序7.归并排序8.基数排序8.外部排序9.败者树10.置换选择排序 排序 排序的基本概念 排序&#xff0c;就是重新排列表中的元素&#xff0c;使表中的元素满足按关键字有序的过程 评价指标算…

Git 如何合并多个连续的提交

我平常的编程喜欢是写一段代码就提交一次&#xff0c;本地一般不攒代码&#xff0c;生怕本地有什么闪失导致白干。但这样就又导致一个问题&#xff1a;查看历史日志时十分不方便&#xff0c;随便找一段提交可以看到&#xff1a; > git log --oneline 8f06be5 add 12/qemu-h…

LeetCode-142. 环形链表 II【哈希表 链表 双指针】

LeetCode-142. 环形链表 II【哈希表 链表 双指针】 题目描述&#xff1a;解题思路一&#xff1a;快慢指针 判断是否有环见解题思路二&#xff1a;set()解题思路三&#xff1a;0 题目描述&#xff1a; 给定一个链表的头节点 head &#xff0c;返回链表开始入环的第一个节点。 如…

JavaScript中什么叫深拷贝?

在 JavaScript 中&#xff0c;深拷贝指的是创建一个新的对象&#xff0c;这个新的对象与原始对象完全独立&#xff0c;没有任何共享的属性或者数据&#xff0c;它们不共享同一块内存地址。深拷贝会复制原始对象的所有属性和嵌套对象的所有属性&#xff0c;包括嵌套对象中的属性…

数据结构之单链表实现(JAVA语言+C语言)

一、理论 1 单链表结构 2 增、删、查 、改思路 &#xff08;增&#xff09;直接添加放到最后即可。按顺序添加&#xff1a;找到要修改的节点的前一个节点&#xff0c;插入新节点&#xff08;&#xff09;。&#xff08;改&#xff09;要修改的节点修改内容即可。&#xff08;…

Python(乱学)

字典在转化为其他类型时&#xff0c;会出现是否舍弃value的操作&#xff0c;只有在转化为字符串的时候才不会舍弃value 注释的快捷键是ctrl/ 字符串无法与整数&#xff0c;浮点数&#xff0c;等用加号完成拼接 5不入&#xff1f;&#xff1f;&#xff1f; 还有一种格式化的方法…

VScode-配置文件

导入配置文件 ShiftCtrlp 输入&#xff1a; import 选择文件 点击确认 导出配置文件 设置选择导出 确认导出 保存为本地文件 保存文件

浏览器工作原理与实践--WebAPI:XMLHttpRequest是怎么实现的

在上一篇文章中我们介绍了setTimeout是如何结合渲染进程的循环系统工作的&#xff0c;那本篇文章我们就继续介绍另外一种类型的WebAPI——XMLHttpRequest。 自从网页中引入了JavaScript&#xff0c;我们就可以操作DOM树中任意一个节点&#xff0c;例如隐藏/显示节点、改变颜色、…

全氟己酮气体灭火装置厂家爆料:自动灭火贴好用吗?

近些年来&#xff0c;自动灭火贴备受瞩目。好奇的朋友注意了&#xff0c;今天小编特意请教了国内知名全氟己酮气体灭火装置厂家&#xff0c;为大家解答一下自动灭火贴好用吗&#xff1f;自动灭火贴有什么优缺点&#xff1f; 不知道大家有没有好奇过&#xff0c;为什么下图这个…

Qt使用opencv打开摄像头

1.效果图 2.代码 #include "widget.h"#include <QApplication>#include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/imgproc/imgproc.hpp>#include <QImage> #include <QLabel> #incl…

Oracle基础-PL/SQL编程 备份

1、PL/SQL简介 PL/SQL块结构 约定&#xff1a;为了方便&#xff0c;本文后面把PL/SQL简称PL。 PL程序都是以块&#xff08;BLOCK&#xff09;为基本单位&#xff0c;整个PL块分三部分&#xff1a;声明部分&#xff08;使用DECLARE开头&#xff09;、执行部分(以BEGIN开头)和异…

c#仿ppt案例

画曲线 namespace ppt2024 {public partial class Form1 : Form{public Form1(){InitializeComponent();}//存放所有点的位置信息List<Point> lstPosition new List<Point>();//控制开始画的时机bool isDrawing false;//鼠标点击开始画private void Form1_MouseD…