图的应用解析

01.任何一个无向连通图的最小生成树(B )。
A.有一棵或多棵                                                B.只有一棵
C.一定有多棵                                                   D.可能不存在

02.用Prim算法和Kruskal算法构造图的最小生成树,所得到的最小生成树(C)。
A.相同                                                               B.不相同
C.可能相同,可能不同                                      D.无法比较

03.以下叙述中,正确的是( A)。
A.只要无向连通图中没有权值相同的边,则其最小生成树唯一
B.只要无向图中有权值相同的边,则其最小生成树一定不唯一
C.从n个顶点的连通图中选取n-1条权值最小的边,即可构成最小生成树
D.设连通图G含有n个顶点,则含有n个顶点、n-1条边的子图一定是G的生成树

04.设有n个顶点的无向连通图的最小生成树不唯一,则下列说法中正确的是(B )。
A.图的边数一定大于n- 1
B.图的权值最小的边一定有多条
C.图的最小生成树的代价不一定相等
D.图的各条边的权值不相等

05.用Prim算法求一个带权连通图的最小生成树,在算法执行的某个时刻,已选取的顶点集合U={1,2,3},已选取的边集合TE={(1,2),(2,3)},要选取下一条权值最小的边,应当从( C)组中选取。
A. {(1,4),(3,4),(3,5),(2,5)}
B.{(3,4),(3,5), (4,5), (1,4)}
C. {(1,2),(2,3),(3,5)}
D. {(4,5), (1,3),(3,5)}

06.用Kruskal算法求一个带权连通图的最小生成树,在算法执行的某个时刻,已选取的边
集合TE={(1,2),(2,3),(3,5)},要选取下一条权值最小的边,不可能选取的边是(C  ).
A.(3,6)
B. (2,4)
C. (1,3)
D. (1,4)

07.下列关于图的最短路径的相关叙述中,正确的是( C).
A.最短路径一定是简单路径
B.Dijkstra算法不适合求有回路的带权图的最短路径
C.Dijkstra算法不适合求任意两个顶点的最短路径
D.Floyd算法求两个顶点的最短路径时,pathk-1一定是pathk的子集

08.下列关于图的最短路径的相关叙述中,正确的是( A )。
Ⅰ Dijkstra算法求单源最短路径不允许边的权为负
Ⅱ.Dijkstra算法求每对顶点间的最短路径的时间复杂度是O(n2)
Ⅲ. Floyd算法求每对顶点间的最短路径允许边的权为负,但不允许含有负边的回路
A.I、Ⅱ和Ⅲ                        B.仅I                        C.I和Ⅲ                        D.II和Ⅲ


C

10. 用Dijkstra算法求一个带权有向图的从顶点0出发的最短路径,在算法执行的某个时刻,已求得的最短路径的顶点集合S= {0,2,3,4},下一个选取的目标顶点是顶点1,则可能修改的最短路径是(A)。
A.从顶点0到顶点3的最短路径
B.从顶点0到顶点2的最短路径
C.从顶点2到顶点4的最短路径
D.从顶点0到顶点1的最短路径

11.下面的( A )方法可以判断出一个有向图是否有环(回路)。
Ⅰ深度优先遍历        Ⅱ.拓扑排序        Ⅲ.求最短路径        IV.求关键路径
A.I、II、IV                        B.I、Ⅲ、IV                C.I、II、Ⅲ                D.全部可以

12.在有向图G的拓扑序列中,若顶点vi在顶点vj之前,则不可能出现的情形是(D )。
A.G中有弧<vi,vj>
B.G中有一条从vi到vj的路径
C.G中没有弧<vi,vj>
D.G中有一条从vj到vi的路径

13.下列关于拓扑排序的说法中,错误的是(B)。
Ⅰ若某有向图存在环路,则该有向图一定不存在拓扑排序
Ⅱ.在拓扑排序算法中为暂存入度为零的顶点,可以使用栈,也可以使用队列
Ⅲ、若有向图的拓扑有序序列唯一,则图中每个顶点的入度和出度最多为1
IV.若有向图的拓扑有序序列唯一,则图中入度为0和出度为0的顶点都仅有1个
A.I、Ⅲ、IV                B.Ⅲ、IV                        C.II、IV                        D.Ⅲ

14.下列关于拓扑排序的说法中,正确的是().
Ⅰ强连通图不能进行拓扑排序
II.在一个有向图的拓扑序列中,若顶点a在顶点b之前,则图中必有一条弧<a, b>|
​​​​​​​A.仅Ⅰ
B.仅Ⅱ
C.Ⅰ和Ⅱ
D.都不正确

15.若一个有向图的顶点不能排成一个拓扑序列,则判定该有向图( ).
A.含有多个出度为0的顶点
B.是个强连通图
C.含有多个入度为0的顶点
D.含有顶点数大于1的强连通分量

16.下图所示有向图的所有拓扑序列共有()个。

A.4
B.6
C.5
D.7


 

18.下列哪种图的邻接矩阵是对称矩阵?()
A.有向网
B.无向图
C.AOV网
D.AOE网

19.若一个有向图具有有序的拓扑排序序列,则它的邻接矩阵必定为()。
A.对称
B.稀疏
C.三角
D.一般

20.用DFS算法遍历一个无环有向图,并在 DFS算法退栈返回时输出相应的顶点,则输出的顶点序列是()。
A.逆拓扑有序                  B.拓扑有序                        C.无序的                D.无法确定

21.下列关于图的说法中,正确的是().
Ⅰ有向图中顶点V的度等于其邻接矩阵中第V行中1的个数
Ⅱ.无向图的邻接矩阵一定是对称矩阵,有向图的邻接矩阵一定是非对称矩阵
Ⅲ.在带权图G的最小生成树G中,某条边的权值可能会超过未选边的权值
IV.若有向无环图的拓扑序列唯一,则可以唯一确定该图
A. I、II和Ⅲ                        B.Ⅲ和IV                        C.Ⅲ                       D.IV

22.下图所示的AOE网中,关键路径长度为()。

A. 16                                B. 17                        C. 18                        D. 19


A.19                                B.20                        C. 21                        D.22

24.下面关于求关键路径的说法中,不正确的是( )。
A.求关键路径是以拓扑排序为基础的
B.一个事件的最早发生时间与以该事件为始的弧的活动的最早开始时间相同
C.一个事件的最迟发生时间是以该事件为尾的弧的活动的最迟开始时间与该活动的持
续时间的差
D.任何一个活动的持续时间的改变可能会影响关键路径的改变

25.下列关于关键路径的说法中,正确的是()
Ⅰ改变网上某一关键路径上的任意一个关键活动后,必将产生不同的关键路径
Ⅱ.在AOE图中,关键路径上活动的时间延长多少,整个工期也就随之延长多少
Ⅲ.缩短关键路径上任意一个关键活动的持续时间可缩短关键路径长度
IV.缩短所有关键路径上共有的任意一个关键活动的持续时间可缩短关键路径长度
V.缩短多条关键路径上共有的任意一个关键活动的持续时间可缩短关键路径长度
A.Ⅱ和V
B.Ⅰ、Ⅱ和IV
C.Ⅱ和IV
D.Ⅰ和IV

26.在求AOE网的关键路径时,若该有向图用邻接矩阵表示且第i列值全为o,则( )。
A.若关键路径存在,第i个顶点一定是起点
B.若关键路径存在,第i个顶点一定是终点
C.关键路径不存在
D.该有向图对应的无向图存在多个连通分量

27.【2010统考真题】对下图进行拓扑排序,可得不同拓扑序列的个数是( )。

A.4
B.3
C.2
D.1

28.【2012统考真题】下列关于最小生成树的叙述中,正确的是()。
Ⅰ.最小生成树的代价唯一
Ⅱ.所有权值最小的边一定会出现在所有的最小生成树中
Ⅲ.使用Prim算法从不同顶点开始得到的最小生成树一定相同
IV.使用Prim算法和Kruskal算法得到的最小生成树总不相同
A.仅Ⅰ
B.Ⅰ、Ⅱ和IV
C.Ⅱ和IV
D.Ⅰ和IV

29.【2012统考真题】对下图所示的有向带权图,若采用Dijkstra算法求从源点α到其他各顶点的最短路径,则得到的第一条最短路径的目标顶点是b,第二条最短路径的目标顶点是c,后续得到的其余各最短路径的目标顶点依次是()。

A. d, e,f
B. e, d,f
C. f, d, e
D. f, e, d

30.【2012统考真题】若用邻接矩阵存储有向图,矩阵中主对角线以下的元素均为零,则关于该图拓扑序列的结论是().
A.存在,且唯一                                        B.存在,且不唯一
C.存在,可能不唯一                                D.无法确定是否存在

31.【2013统考真题】下列AOE网表示一项包含8个活动的工程。通过同时加快若干活动的进度可缩短整个工程的工期。在下列选项中,加快其进度就可缩短工程工期的是()

A.c和e                        B.d和c                                 C.f和d                                    D.f和h

32.【2014统考真题】对下图所示的有向图进行拓扑排序,得到的拓扑序列可能是()。

A. 3,1,2,4,5,6                 B. 3,1,2,4,6,5                  C. 3,1,4,2,5,6                       D.3,1,4,2,6,5

33.【2015统考真题】求下面的带权图的最小(代价)生成树时,可能是Kruskal算法第2次选中但不是Prim算法(从V开始)第2次选中的边是()。

A.(V1, V3)                        B. (V1, V4)                        C. (V2, V3)                        D. (V3, V4)

34.【2011统考真题】下列关于图的叙述中,正确的是( )。
Ⅰ.回路是简单路径
Ⅱ.存储稀疏图,用邻接矩阵比邻接表更省空间
Ⅲ.若有向图中存在拓扑序列,则该图不存在回路
A.仅Ⅱ
B.仅Ⅰ、Ⅱ
C.仅Ⅲ
D.仅Ⅰ、Ⅲ

35.【2016统考真题】使用Dijkstra算法求下图中从顶点1到其他各顶点的最短路径,依次
得到的各最短路径的目标顶点是()

A. 5,2,3,4,6
B. 5,2,3,6,4
C. 5,2,4,3,6
D.5,2,6,3,4

36.【2016统考真题】若对n个顶点、e条弧的有向图采用邻接表存储,则拓扑排序算法的时间复杂度是()。
A. O(n)
B.O(n+e)
C. O(n2)
D. O(ne)

37.【2018统考真题】下列选项中,不是如下有向图的拓扑序列的是().

A.1,5,2,3,6,4
B. 5,1,2,6,3,4
C. 5,1,2,3,6,4
D.5,2,1,6,3,4

38.【2019统考真题】下图所示的AOE网表示一项包含8个活动的工程。活动d的最早开始时间和最迟开始时间分别是( ).

A.3和7                          B.12和12                     C.12和 14                        D.15和15

39.【2019统考真题】用有向无环图描述表达式(x+y)(x+y)/x),需要的顶点个数至少是
( ).
A.5                                B.6                                C. 8                                D.9

40.【2020统考真题】已知无向图G如下所示,使用Kruskal算法求图G的最小生成树,加到最小生成树中的边依次是( ).

A. (b,f) (b, d ),(a, e),(c, e), (b, e)                        B. (b,f ), (b, d), (b, e),(a, e), (c, e)
C. (a, e), (b,e), (c, e), (b, d ),(b,f )                      D. (a,e),(c,e), (b,e),(b,f), (b,d )

41. 【2020统考真题】修改递归方式实现的图的深度优先搜索(DFS)算法,将输出(访问)顶点信息的语句移到退出递归前(即执行输出语句后立刻退出递归)。采用修改后的算法遍历有向无环图G,若输出结果中包含G中的全部顶点,则输出的顶点序列是G的( )。
A.拓扑有序序列                                                B.逆拓扑有序序列
C.广度优先搜索序列                                        D.深度优先搜索序列

42.【2020统考真题】若使用AOE网估算工程进度,则下列叙述中正确的是()。
A.关键路径是从源点到汇点边数最多的一条路径
B.关键路径是从源点到汇点路径长度最长的路径
C.增加任意一个关键活动的时间不会延长工程的工期
D.缩短任意一个关键活动的时间将会缩短工程的工期

43.【2021统考真题】给定如下有向图,该图的拓扑有序序列的个数是()。

A.1                                 B.2                                C.3                                        D.4

44.【2021统考真题】使用Dijkstra算法求下图中从顶点1到其余各顶点的最短路径,将当前找到的从顶点1到顶点2,3,4,5的最短路径长度保存在数组dist 中,求出第二条最短路径后,dist中的内容更新为()。

A. 26,3,14,6                  B.25,3,14,6                     C.21,3, 14,6                        D. 15,3,14,6

45.【2022统考真题】下图是一个有10个活动的AOE网,时间余量最大的活动是()。

A.c                                 B.g                                   C. h                                  D. j

46.【2023统考真题】已知无向连通图G中各边的权值均为1。在下列算法中,一定能够求出图G中从某顶点到其余各顶点最短路径的是( )。
ⅠPrim算法        Ⅱ.Kruskal算法        Ⅲ.图的广度优先搜索算法
A.仅I                              B.仅Ⅲ                              C.仅Ⅰ、Ⅱ                        D.Ⅰ、Ⅱ、IⅢ

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/296541.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用ffmpeg将视频解码为帧时,图像质量很差

当使用ffmpeg库自带的ffmpeg.exe对对视频进行解帧或合并时&#xff0c;结果质量很差。导致这种原因的是在使用ffmpeg.exe指令进行解帧或合并时使用的是默认的视频码率&#xff1a;200kb/s。 如解帧指令&#xff1a; ffmpeg.exe -i 600600pixels.avi -r 2 -f image2 img/%03d.…

typdef:深入理解C语言中typdef关键词的用法

typedef&#xff1a;C语言中的类型重命名关键词 在C语言中&#xff0c;typedef 是一个非常有用的关键词&#xff0c;它允许我们为现有的数据类型定义一个新的名称。这不仅使得代码更加清晰易读&#xff0c;还提高了代码的可维护性。在这篇博客中&#xff0c;我们将深入探讨 ty…

Native Instruments Kontakt 7 for Mac v7.9.0 专业音频采样

Native Instruments Kontakt 7是一款强大的软件采样器&#xff0c;它允许用户从各种来源采样音频并进行编辑和处理。它包含大量预设采样库&#xff0c;包括乐器、合成器、鼓组和声音效果等。此外&#xff0c;Kontakt 7还允许用户创建自己的采样库&#xff0c;以便根据自己的需要…

vue2源码解析——vue中如何进行依赖收集、响应式原理

vue每个组件实例vm都有一个渲染watcher。每个响应式对象的属性key都有一个dep对象。所谓的依赖收集&#xff0c;就是让每个属性记住它依赖的watcher。但是属性可能用在多个模板里&#xff0c;所以&#xff0c;一个属性可能对应多个watcher。因此&#xff0c;在vue2中&#xff0…

NineData云原生智能数据管理平台新功能发布|2024年3月版

数据库 DevOps - 大功能升级 SQL 开发早期主要提供 SQL 窗口&#xff08;IDE&#xff09;功能&#xff0c;在产品经过将近两年时间的打磨&#xff0c;新增了大量的企业级功能&#xff0c;已经服务了上万开发者&#xff0c;覆盖了数据库设计、开发、测试、变更等生命周期的功能…

python的pip如何升级

升级pip的方法如下&#xff1a; 打开命令行工具。在Windows系统中&#xff0c;可以通过按下WinR键&#xff0c;然后输入"cmd"来打开命令提示符&#xff1b;在Mac或Linux系统中&#xff0c;可以直接打开终端。检查当前pip版本。在终端或命令行中输入以下命令&#…

《C Prime Plus》02

1. UNIX 系统 C语言因UNIX系统而生&#xff0c;也因此而流行&#xff0c;所以我们从UNIX系统开始&#xff08;注意&#xff1a;我们提到的UNIX还包含其他系统&#xff0c;如FreeBSD&#xff0c;它是UNIX的一个分支&#xff0c;但是由于法律原因不使用该名称&#xff09;。 UN…

蓝桥杯备考

目录 P8823 [传智杯 #3 初赛] 期末考试成绩 题目描述 输入格式 输出格式 输入输出样例 说明/提示 代码 P8828 [传智杯 #3 练习赛] 直角三角形 题目描述 输入格式 输出格式 输入输出样例 代码 P8833 [传智杯 #3 决赛] 课程 题目背景 题目描述 输入格式 输出格式…

并发编程之线程池的应用以及一些小细节的详细解析

线程池在实际中的使用 实际开发中&#xff0c;最常用主要还是利用ThreadPoolExecutor自定义线程池&#xff0c;可以给出一些关键的参数来自定义。 在下面的代码中可以看到&#xff0c;该线程池的最大并行线程数是5&#xff0c;线程等候区&#xff08;阻塞队列)是3&#xff0c;即…

鸿蒙OS开发实例:【组件化模式】

组件化一直是移动端比较流行的开发方式&#xff0c;有着编译运行快&#xff0c;业务逻辑分明&#xff0c;任务划分清晰等优点&#xff0c;针对Android端的组件化&#xff1b;与Android端的组件化相比&#xff0c;HarmonyOS的组件化可以说实现起来就颇费一番周折&#xff0c;因为…

还得是抖音,字节推出竖屏视频理解数据集,入选CVPR2024

ChatGPT狂飙160天&#xff0c;世界已经不是之前的样子。 新建了免费的人工智能中文站https://ai.weoknow.com 新建了收费的人工智能中文站https://ai.hzytsoft.cn/ 更多资源欢迎关注 短视频在当下社交媒体逐渐成为主导的视频格式。传统视频处理技术和研究一般都专注于横屏视频…

[HackMyVM]靶场Boxing

难度:Medium kali:192.168.56.104 靶机:192.168.56.143 端口扫描 ┌──(root㉿kali2)-[~/Desktop] └─# nmap 192.168.56.143 Starting Nmap 7.94SVN ( https://nmap.org ) at 2024-04-03 19:25 CST Nmap scan report for staging-env.boxing.hmv (192.168.56.143) Host …

音频转换工具 Bigasoft FLAC Converter for Mac

Bigasoft FLAC Converter for Mac是一款专为Mac用户设计的音频转换工具&#xff0c;它能够将FLAC音频文件高效、高质量地转换为其他常见的音频格式&#xff0c;如MP3、AAC等。这款软件具有直观易用的界面&#xff0c;使用户能够轻松上手&#xff0c;无需复杂的操作步骤即可完成…

Celery的任务流

Celery的任务流 在之前调用任务的时候只是使用delay()和apply_async()方法。但是有时我们并不想简单的执行单个异步任务&#xff0c;比如说需要将某个异步任务的结果作为另一个异步任务的参数或者需要将多个异步任务并行执行&#xff0c;返回一组返回值&#xff0c;为了实现此…

python文件处理:解析docx/word文件文字、图片、复选框

前言 因为一些项目原因&#xff0c;我需要提供解析docx内容功能。本来以为这是一件比较简单的工作&#xff0c;没想到在解析复选框选项上吃了亏&#xff0c;并且较长一段时间内通过各种渠道都没有真正解决这一问题&#xff0c;反而绕了远路。 终于&#xff0c;我在github pytho…

9.图像中值腐蚀膨胀滤波的实现

1 简介 在第七章介绍了基于三种卷积前的图像填充方式&#xff0c;并生成了3X3的图像卷积模板&#xff0c;第八章运用这种卷积模板进行了均值滤波的FPGA实现与MATLAB实现&#xff0c;验证了卷积模板生成的正确性和均值滤波算法的MATLAB算法实现。   由于均值滤波、中值滤波、腐…

v-text 和v-html

接下来&#xff0c;我讲介绍一下v-text和v-html的使用方式以及它们之间的区别。 使用方法 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta name"viewport" content"widthdevice-widt…

Redis的值有5种数据结构,不同数据结构的使用场景是什么?

文章目录 字符串缓存计数共享Session限速 哈希缓存 列表消息队列文章列表栈队列有限集合 集合标签抽奖社交需求 有序集合排行榜系统 字符串 缓存 &#xff08;1&#xff09;使用原生字符类型缓存 优点&#xff1a;简单直观&#xff0c;每个属性都支持更新操作 缺点&#xff1…

Ansible批量操作(上传文件、删除文件指定文件内容、执行sh文件等)

官方网站 https://www.ansible.com/ 一、Ansible 简介 1、Ansible是新出现的自动化运维工具&#xff0c;完全基于Python开发&#xff0c;集合了众多运维工具&#xff08;puppet、chef、func、fabric&#xff09;的优点&#xff0c;实现了批量系统配置、批量程序部署、批量运行…

4.3学习总结

[HNCTF 2022 WEEK2]Canyource&#xff08;无参数&#xff09; 通过这题又接触了一种无参数RCE的方法&#xff0c;前面学习的getallheaders只有在apache环境下才能使用&#xff0c;具有一定的局限性 这里是利用php函数来构造读取flag的方法 localeconv() – 函数返回一个包含本…