文章目录
- 冯-诺依曼体系结构
- 操作系统
- shell
冯-诺依曼体系结构
我们现在所使用的计算机就是冯-诺依曼体系结构。
存储器就是内存。
由下图可知,寄存器最快,为啥不用寄存器呢?
因为越快价格就最贵,冯诺依曼体系结构的诞生,极大降低了计算机的价格。
冯诺依曼结构的原理是,在CPU进行计算的时候,内存已经接收外部输入设备输入的数据并存储,在CPU进行完计算后将结果取出,然后将结果放到输出设备,再把输入的数据交给CPU进行计算
所以这就是为什么程序运行前要先加载到内存!
操作系统
通过冯-诺依曼体系结构去理解何为操作系统。
内存怎么读数据?输入数据以后怎么从缓冲区输出到输出设备的?操作系统干的就是这类活,
设计操作系统的目的就是更好地与硬件交互,管理软件资源,为应用程序提供一个良好的执行环境
认识系统调用:
操作系统为啥不跟底层硬件直接联系? 如果OS和底层硬件直接联系,一旦底层硬件发生任何改变,OS为了与硬件兼容,OS的源代码就需要重新编译。如果频繁的编译,计算机的运行效率就会大大降低。
为了解决这个问题,在操作系统与底层硬件之间就需要增加一层结构让操作系统与底层硬件之间实现解耦。这个增加的结构就是驱动程序
一般来说,操作系统是不会把源代码呈现给用户,这是操作系统对于自己的一种保护。
那我们如何进行操作呢?
操作系统会封装出一系列接口给用户,这些接口就叫系统调用接口,除了系统调用接口,没有任何方法可以间接使用操作系统。
但是这些接口对于普通用户来说具有一定的使用成本,因为用户必须要先对操作系统有一定了解,为了方便用户,所以又对系统接口进行封装形成我们的用户操作接口,常见的用户接口有各种库如libc以及部分指令,我们一般在实际编写的过程中调用各种的函数printf,scanf就是来源于这些库。
shell
在操作系统中,Windows 采用图形化界面作为交互方式,而Linux则使用命令行界面。尽管两者的交互方式存在差异,但从本质上讲,它们的目的是一致的,即都是为了便于用户进行相关操作。图形化界面和命令行界面都属于外壳程序的范畴。无论是Windows的图形化界面还是Linux的命令行界面,它们都是操作系统与用户之间进行交互的接口,通过这些界面,用户能够向操作系统发送指令并获取相应的反馈。尽管Windows 和Linux的交互方式有所不同,但它们的核心目标都是为了满足用户的操作需求。
kernel是操作系统的核心,kernel和用户通过外壳程序来沟通。
shell(比如centos7的bash)会先读用户输入的命令进行一系列操作,如果执行命令过程中没有出现异常(文件错误,权限不够),就会创建子进程,子进程会把执行结果返回给父进程,值得注意的是子进程出现的任何问题,都不会对父进程Shell产生影响。
以Windows为例,我们每运行一个程序,就相当于创建了一个子进程,比如打开浏览器、运行办公软件等。即便这些子进程中的某个出现问题,如浏览器卡死(程序异常)或被关闭(程序终止),也不会影响其他子程序的正常运行。同样地,在Linux中,Shell与子进程的关系也是如此,确保了系统的稳定性和可靠性。