恶劣天候三维目标检测论文列表整理

恶劣天候三维目标检测论文列表

在这里插入图片描述

图摘自Kradar

🏠 介绍

Hi,这是有关恶劣天气下三维目标检测的论文列表。主要是来源于近3年研究过程中认为有意义的文章。希望能为新入门的研究者提供一些帮助。

可能比较简陋,存在一定的遗漏,欢迎在Issue中提出,我们会及时更新~

github链接:https://github.com/ylwhxht/3D_Object_Detection_in_Adverse_Weather_Paper_List
(觉得有用的话来个⭐,谢谢^ _ ^)

📚 Table of Contents

  • Survey
  • Dataset
  • Weather Quantitative Analysis
  • LiDAR Adverse Weather Simulation
  • LiDAR Denoiser
  • LiDAR-based/with Camera Detector
  • 4D Radar-based/with Camera Detector
  • LiDAR+3D Radar Fusion Detector
  • LiDAR+4D Radar Fusion Detector
  • with Cooperative Perception

Surveys 🔝

2022

  • Perception and Sensing for Autonomous Vehicles Under Adverse Weather Conditions: A Survey
    ISPRS 2022
    [paper]

  • 3D Object Detection for Autonomous Driving: A Survey
    Pattern Recognition 2022
    [paper]

2023

  • Performance and Challenges of 3D Object Detection Methods in Complex Scenes for Autonomous Driving
    TIV 2023
    [paper]

  • Survey on LiDAR Perception in Adverse Weather Conditions
    IV 2023
    [paper]

2024

  • Object Detection in Autonomous Vehicles under Adverse Weather: A Review of Traditional and Deep Learning Approaches
    Algorithms 2024
    [paper]

  • Perception Methods for Adverse Weather Based on Vehicle Infrastructure Cooperation System: A Review
    Sensors 2024
    [paper]

  • Robustness-Aware 3D Object Detection in Autonomous Driving: A Review and Outlook
    TITS 2024
    [paper]

2025

  • LiDAR Denoising Methods in Adverse Environments: A Review
    Sensors 2025
    [paper]

Datasets 🔝

2021

  • [DENSE(STF)]: Seeing Through Fog Without Seeing Fog: Deep Multimodal Sensor Fusion in Unseen Adverse Weather
    CVPR 2020
    [paper] [data]

  • [WOD-DA]: Waymo Open Dataset Domain Adaptation
    2020
    [data]

2022

  • [CADC]: Canadian Adverse Driving Conditions Dataset
    IJRR 2021
    [paper] [data]

2023

  • [Kradar]: K-radar: 4d radar object detection for autonomous driving in various weather conditions
    NIPS 2022
    [paper] [code&data]

  • [WADS]: Winter adverse driving dataset for autonomy in inclement winter weather
    Optical Engineering 2023
    [paper] [code&data]

  • [SemanticSpray++]: SemanticSpray++: A Multimodal Dataset for Autonomous Driving in Wet Surface Conditions
    IV 2024
    [paper] [code&data]

2024

  • Is Your LiDAR Placement Optimized for 3D Scene Understanding?
    NIPS 2024
    [paper] [code&data]

Weather Quantitative Analysis🔝

2009

  • Performance of Laser and Radar Ranging Devices in Adverse Environmental Conditions
    Journal of Field Robotics 2009
    [paper]

2018

  • A Benchmark for Lidar Sensors in Fog: Is Detection Breaking Down?
    IV 2018
    [paper]

2020

  • Analysis of automotive lidar sensor model considering scattering effects in regional rain environments
    Access 2020
    [paper]

2021

  • A Quantitative Analysis of Point Clouds from Automotive Lidars Exposed to Artificial Rain and Fog
    Atmosphere 2021
    [paper]

2022

  • Measuring the Influence of Environmental Conditions on Automotive Lidar Sensors
    Sensors 2022
    [paper]

  • Camera and LiDAR analysis for 3D object detection in foggy weather conditions
    ICPRS 2022
    [paper]

2023

  • Benchmarking Robustness of 3D Object Detection to Common Corruptions in Autonomous Driving
    CVPR 2023
    [paper] [code]

2024

  • Effect of Fog Particle Size Distribution on 3D Object Detection Under Adverse Weather Conditions
    Arxiv 2024
    [paper]

LiDAR Adverse Weather Simulation🔝

2018

  • [FogSimulation]: A Benchmark for Lidar Sensors in Fog: Is Detection Breaking Down?
    IV 2018
    [paper]

2020

  • [Fog Simulation]: Seeing Through Fog Without Seeing Fog: Deep Multimodal Sensor Fusion in Unseen Adverse Weather
    CVPR 2020
    [paper] [code]

2021

  • [Fog Simulation]: Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in Adverse Weather
    ICCV 2021
    [paper] [code]

  • [Rain Simulation]: Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of Adverse Weather Conditions for 3D Object Detection
    Arxiv 2021
    [paper] [code]

2022

  • [Snow Simulation]: https://arxiv.org/abs/2203.15118
    CVPR 2022
    [paper] [code]

  • [Spray Simulation]: Reconstruction and Synthesis of Lidar Point Clouds of Spray
    RAL 2022
    [paper] [code]

2023

  • [Various Simulation]: Benchmarking Robustness of 3D Object Detection to Common Corruptions in Autonomous Driving
    CVPR 2023
    [paper] [code]

  • [Snow Simulation]: LiDAR Point Cloud Translation Between Snow and Clear Conditions Using Depth Images and GANs
    IV 2023
    [paper]

  • [Various Simulation]: Robo3D: Towards Robust and Reliable 3D Perception against Corruptions
    ICCV 2023
    [paper] [code]

  • [Snow Simulation]: L-DIG: A GAN-Based Method for LiDAR Point Cloud Processing under Snow Driving Conditions
    Sensors 2023
    [paper]

2024

  • [Snow Simulation]: LiDAR Point Cloud Augmentation for Adverse Conditions Using Conditional Generative Model
    Remote Sens. 2024
    [paper]

  • [Rain Simulation]: Sunshine to Rainstorm: Cross-Weather Knowledge Distillation for Robust 3D Object Detection
    AAAI 2024
    [paper] [code]

2025

  • [Snow Simulation]: Adverse Weather Conditions Augmentation of LiDAR Scenes with Latent Diffusion Models
    Arxiv. 2025
    [paper]

LiDAR Denoiser🔝

2018

  • De-noising of lidar point clouds corrupted by snowfall
    CRV 2018
    [paper]

2020

  • Fast and Accurate Desnowing Algorithm for LiDAR Point Clouds
    Access 2020
    [paper]

  • CNN-based Lidar Point Cloud De-Noising in Adverse Weather
    RAL 2020
    [paper] [code]

2021

  • DSOR: A Scalable Statistical Filter for Removing Falling Snow from LiDAR Point Clouds in Severe Winter Weather
    Arxiv 2021
    [paper] [code]

2022

  • LiSnowNet: Real-time Snow Removal for LiDAR Point Cloud
    IROS 2022
    [paper]

  • De-snowing LiDAR Point Clouds With Intensity and Spatial-Temporal Features
    ICRA 2022
    [paper]

  • A Scalable and Accurate De-Snowing Algorithm for LiDAR Point Clouds in Winter
    Remote Sens. 2022
    [paper]

  • AdverseNet: A LiDAR Point Cloud Denoising Network for Autonomous Driving in Rainy Snowy and Foggy Weather
    ICUS 2022
    [paper] [code]

  • LiSnowNet: Real-time Snow Removal for LiDAR Point Clouds
    IROS 2022
    [paper] [code]

  • 4denoisenet: Adverse weather denoising from adjacent point clouds
    RAL. 2022
    [paper] [code]

  • Adaptive Two-Stage Filter for De-snowing LiDAR Point Clouds
    ICCRI 2022
    [paper]

2023

  • RGOR: De-noising of LiDAR point clouds with reflectance restoration in adverse weather
    ICTC. 2023
    [paper]

  • DCOR: Dynamic Channel-Wise Outlier Removal to De-Noise LiDAR Data Corrupted by Snow
    ICIP 2023
    [paper]

  • GAN Inversion Based Point Clouds Denoising in Foggy Scenarios for Autonomous Driving
    ICDL 2023
    [paper]

2024

  • Denoising Point Clouds with Intensity and Spatial Features in Rainy Weather
    TITS 2024
    [paper]

  • RGB-LiDAR sensor fusion for dust de-filtering in autonomous excavation applications
    Automation in Construction 2024
    [paper]

  • TripleMixer: A 3D Point Cloud Denoising Model for Adverse Weather
    Arxiv 2024
    [paper] [code]

  • An improved point cloud denoising method in adverse weather conditions based on PP-LiteSeg network
    PeerJ Computer Science 2024
    [paper]

  • Denoising Framework Based on Multiframe Continuous Point Clouds for Autonomous Driving LiDAR in Snowy Weather
    Sensors 2024
    [paper] [code]

  • Dust De-Filtering in LiDAR Applications With Conventional and CNN Filtering Methods
    Sensors 2024
    [paper]

  • AdWeatherNet: Adverse Weather Denoising with Point Cloud Spatiotemporal Attention
    VCIP 2024
    [paper] [code]

  • 3D-UnOutDet: A Fast and Efficient Unsupervised Snow Removal Algorithm for 3D LiDAR Point Clouds
    Authorea Preprints 2024
    [paper] [code]

2025

  • Semantic Segmentation Based Rain and Fog Filtering Only by LiDAR Point Clouds
    Sensors. 2025
    [paper]

LiDAR-based/with Camera Detector🔝

2020

  • 1st Place Solution for Waymo Open Dataset Challenge - 3D Detection and Domain Adaptation
    Arxiv 2020
    [paper]

2021

  • SPG: Unsupervised Domain Adaptation for 3D Object Detection via Semantic Point Generation
    CVPR 2021
    [paper]

2022

  • Rethinking LiDAR Object Detection in adverse weather conditions
    ICRA 2022
    [paper]

  • Towards Robust 3D Object Detection In Rainy Conditions ITSC 2022
    [paper] [code]

  • LossDistillNet: 3D Object Detection in Point Cloud Under Harsh Weather Conditions
    Access 2022
    [paper]

  • Robust 3D Object Detection in Cold Weather Conditions
    IV 2022
    [paper]

  • Robust-FusionNet: Deep Multimodal Sensor Fusion for 3-D Object Detection Under Severe Weather Conditions
    TIM 2022
    [paper]

2023

  • A Point Cloud-based 3D Object Detection Method for Winter Weather
    ISCER 2023
    [paper]

  • Source-free Unsupervised Domain Adaptation for 3D Object Detection in Adverse Weather
    ICRA 2023
    [paper] [code]

  • Enhancing Lidar-based Object Detection in Adverse Weather using Offset Sequences in Time
    ICECET 2023
    [paper]

2024

  • Geometric information constraint 3D object detection from LiDAR point cloud for autonomous vehicles under adverse weather
    Transportation research part C: emerging technologies 2024
    [paper]

  • Sunshine to Rainstorm: Cross-Weather Knowledge Distillation for Robust 3D Object Detection
    AAAI 2024
    [paper] [code]

  • SAMFusion: Sensor-Adaptive Multimodal Fusion for 3D Object Detection in Adverse Weather
    ECCV 2024
    [paper] [code]

  • LiDAR Point Cloud Augmentation for Adverse Conditions Using Conditional Generative Model
    Remote Sensing 2024
    [paper]

2025

  • AWARDistill: Adaptive and robust 3D object detection in adverse conditions through knowledge distillation,Expert Systems with Applications
    2025
    [paper]

  • 3D vision object detection for autonomous driving in fog using LiDaR
    Simulation Modelling Practice and Theory 2025
    [paper]


4D Radar-based/with Camera Detector 🔝

2022

  • [RTNH]: K-radar: 4d radar object detection for autonomous driving in various weather conditions
    NIPS 2022
    [paper] [code&data]

2024

  • TL-4DRCF: A Two-Level 4-D Radar–Camera Fusion Method for Object Detection in Adverse Weather
    Sensors 2024
    [paper]

LiDAR+3D Radar Fusion Detector🔝

2020

  • Seeing Through Fog Without Seeing Fog: Deep Multimodal Sensor Fusion in Unseen Adverse Weather
    CVPR 2020
    [paper] [code]

2021

  • Robust Multimodal Vehicle Detection in Foggy Weather Using Complementary Lidar and Radar Signals
    CVPR 2021
    [paper] [code]

2022

  • Modality-Agnostic Learning for Radar-Lidar Fusion in Vehicle Detection
    CVPR 2022
    [paper]

2023

  • ST-MVDNET++: IMPROVE VEHICLE DETECTION WITH LIDAR-RADAR GEOMETRICAL AUGMENTATION VIA SELF-TRAINING
    ICASSP 2023
    [paper] [code]

  • Bi-LRFusion: Bi-Directional LiDAR-Radar Fusion for 3D Dynamic Object Detection
    CVPR 2023
    [paper]

2024

  • 3D Object Detection Algorithm in Adverse Weather Conditions Based on LiDAR-Radar Fusion
    CCC 2024
    [paper]

  • RaLiBEV: Radar and LiDAR BEV Fusion Learning for Anchor Box Free Object Detection Systems
    TCSVT 2024
    [paper] [code]

  • SAMFusion: Sensor-Adaptive Multimodal Fusion for 3D Object Detection in Adverse Weather
    ECCV 2024
    [paper] [code]

  • TransFusion: Multi-Modal Robust Fusion for 3D Object Detection in Foggy Weather Based on Spatial Vision Transformer
    TITS 2024
    [paper]


LiDAR+4D Radar Fusion Detector🔝

2024

  • Towards Robust 3D Object Detection with LiDAR and 4D Radar Fusion in Various Weather Conditions
    CVPR 2024
    [paper] [code]

  • LiDAR-based All-weather 3D Object Detection via Prompting and Distilling 4D Radar
    ECCV 2024
    [paper] [code]

2025

  • L4DR: LiDAR-4DRadar Fusion for Weather-Robust 3D Object Detection
    AAAI 2025
    [paper] [code]

with Cooperative Perception 🔝

2024

  • V2X-DGW: Domain Generalization for Multi-agent Perception under Adverse Weather Conditions
    Arxiv 2024
    [paper]

  • Weather-Aware Collaborative Perception With Uncertainty Reduction has been published
    TITS 2024
    [paper] [data]

2025

  • V2X-R: Cooperative LiDAR-4D Radar Fusion for 3D Object Detection with Denoising Diffusion
    CVPR 2025
    [paper] [code]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/29744.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

掌握Kubernetes Network Policy,构建安全的容器网络

在 Kubernetes 集群中,默认情况下,所有 Pod 之间都是可以相互通信的,这在某些场景下可能会带来安全隐患。为了实现更精细的网络访问控制,Kubernetes 提供了 Network Policy 机制。Network Policy 允许我们定义一组规则&#xff0c…

Mybatis集合嵌套查询,三级嵌套

三个表:房间 玩家 玩家信息 知识点:Mybatis中级联有关联(association)、集合(collection)、鉴别器(discriminator)三种。其中,association对应一对一关系、collectio…

字典树(trie树)详解

【本文概要】本文主要介绍了字典树的概念,字典树的一般算法,包括初始化,插入,查找等,最后举了比较典型的案例以及算法比赛中常见的“01树”来辅助理解字典树这种特殊的数据结构。 1、什么是字典树 字典树,是…

【html期末作业网页设计】

html期末作业网页设计 作者有话说项目功能介绍 网站结构完整代码网站样图 作者有话说 目前,我们的项目已经搭建了各页面的基本框架,但内容填充还不完善,各页面之间的跳转逻辑也还需要进一步优化。 我们深知,一个好的项目需要不断…

数据安全VS创作自由:ChatGPT与国产AI工具隐私管理对比——论文党程序员必看的避坑指南

文章目录 数据安全VS创作自由:ChatGPT与国产AI工具隐私管理对比——论文党程序员必看的避坑指南ChatGPTKimi腾讯元宝DeepSeek 数据安全VS创作自由:ChatGPT与国产AI工具隐私管理对比——论文党程序员必看的避坑指南 产品隐私设置操作路径隐私协议ChatGPT…

C语言实现贪吃蛇

贪吃蛇小游戏的实现 讲解1.Win32 API介绍1.1控制台程序(system())1.2控制台屏幕上的坐标CDDRD1.3 GetStdHandle1.4 GetConsoleCursorInfo1.5 SetConsoleCursorInfo1.6 SetConsoleCursorPostion1.7 GetAsyncKeyState 2.游戏设计2.1地图2.2蛇身和食物2.3数据结构设计2.4游戏流程设…

游戏引擎学习第142天

今天的计划 欢迎来到这个游戏开发项目,我们将从零开始编写一个完整的游戏,并且不会使用任何现成的库或引擎。整个开发过程中涉及的所有代码都会被完整展示,包括游戏运行所需的每一个细节。无论是哪款游戏,最终都需要有人编写底层…

Manus全球首个通用Agent,Manus AI:Agent应用的ChatGPT时刻

文章目录 前言Manus AI: 全球首个通用AgentManus AI: 技术架构与创始人经历AI Agent的实现框架与启示AI Agent的发展预测行业风险提示 前言 这是一篇关于Manus AI及其在通用人工智能领域的应用和前景的报告,主要介绍了Manus AI的产品定位、功能、技术架构、创始人经…

FPGA学习篇——Verilog学习3(关键字+注释方法+程序基本框架)

1 Verilog常用关键字 大概知道以下哪些是关键字就好,如何使用还是得在编写代码中来学习。 2 Verilog注释方法 Verilog有两种注释方式: 2.1 “ // ” 单行。 2.2 “ /* ... */ ” 可扩展多行。 3 Verilog程序基本框架 Verilog 的基本设计单元是“…

一文对比RAGFLOW和Open WebUI【使用场景参考】

一、RAGFLOW与Open WebUI RAGFLOW是一款基于深度文档理解构建的开源 RAG(Retrieval-Augmented Generation)引擎。RAGFlow 可以为各种规模的企业及个人提供一套精简的 RAG 工作流程,结合大语言模型(LLM)针对用户各类不…

SyntaxError: Missing semicolon

🤍 前端开发工程师、技术日更博主、已过CET6 🍨 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 🕠 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》、《前端求职突破计划》 🍚 蓝桥云课签约作者、…

游戏引擎学习第140天

回顾并为今天的内容做准备 目前代码的进展到了声音混音的部分。昨天我详细解释了声音的处理方式,声音在技术上是一个非常特别的存在,但在游戏中进行声音混音的需求其实相对简单明了,所以今天的任务应该不会太具挑战性。 今天我们会编写一个…

vue3如何配置环境和打包

很多新手友友们或刚从vue2切换到vue3的同学,对vue3不同环境配置和打包有很多困惑的地方,Jenna这就把vue3打包配置流程详细的写下来,你们只需要copy就好啦 1.创建环境文件 当我们把项目拿到手,只需要创建三个环境文件&#xff1a…

《AJAX:前端异步交互的魔法指南》

什么是AJAX AJAX(Asynchronous JavaScript and XML,异步 JavaScript 和 XML) 是一种用于创建异步网页应用的技术,允许网页在不重新加载整个页面的情况下,与服务器交换数据并局部更新页面内容。尽管名称中包含 XML&…

STM32-I2C通信协议

目录 一:什么是I2C通信协议 二:I2C通信 三:I2C时序图 四:面试常见问题 一:什么是I2C通信协议 I2C(Inter-Integrated Circuit)协议是一种串口通信协议,用于在集成电路之间传输数…

阿里推出全新推理模型(因果语言模型),仅1/20参数媲美DeepSeek R1

阿里Qwen 团队正式发布了他们最新的研究成果——QwQ-32B大语言模型!这款模型不仅名字萌萌哒(QwQ),实力更是不容小觑!😎 QwQ-32B 已在 Hugging Face 和 ModelScope 开源,采用了 Apache 2.0 开源协议。大家可通过 Qwen C…

GitCode 助力 vue3-element-admin:开启中后台管理前端开发新征程

源码仓库: https://gitcode.com/youlai/vue3-element-admin 后端仓库: https://gitcode.com/youlai/youlai-boot 开源助力,开启中后台快速开发之旅 vue3-element-admin 是一款精心打造的免费开源中后台管理前端模板,它紧密贴合…

接入DeepSeek,九牧开启AI卫浴新赛道!

2025年或可被称为AI新纪元元年,“具身智能”“智能机器人”“6G”等新词语出现在《政府工作报告》里,国家对制造业转型和“人工智能”的发展提出殷切期望。 近年来,围绕数智化,制造业开启了一场全球竞赛,在无人机、高…

概率、泛化与过拟合

1. 贝叶斯定理 (Bayes Rule) 贝叶斯公式,又称贝叶斯定理、贝叶斯法则,最初是用来描述两个事件的条件概率间的关系的公式,后来被人们发现具有很深刻的实际意义和应用价值。该公式的实际内涵是,支持某项属性的事件发生得愈多&#…

基于Python实现的智能旅游推荐系统(Django)

基于Python实现的智能旅游推荐系统(Django) 开发语言:Python 数据库:MySQL所用到的知识:Django框架工具:pycharm、Navicat 系统功能实现 总体设计 系统实现 系统首页模块 统首页页面主要包括首页,旅游资讯,景点信息…