【机器学习】机器学习创建算法第4篇:K-近邻算法,学习目标【附代码文档】

机器学习(算法篇)完整教程(附代码资料)主要内容讲述:机器学习算法课程定位、目标,K-近邻算法定位,目标,学习目标,1 什么是K-近邻算法,1 Scikit-learn工具介绍,2 K-近邻算法API。K-近邻算法,1.4 k值的选择学习目标,学习目标,1 kd树简介,2 构造方法,3 案例分析,4 总结。K-近邻算法,1.6 案例:鸢尾花种类预测--数据集介绍学习目标,1 案例:鸢尾花种类预测,2 scikit-learn中数据集介绍,1 什么是特征预处理,2 归一化,3 标准化。K-近邻算法,1.8 案例:鸢尾花种类预测—流程实现学习目标,1 再识K-近邻算法API,2 案例:鸢尾花种类预测,总结,1 什么是交叉验证(cross validation),2 什么是网格搜索(Grid Search)。线性回归,2.1 线性回归简介学习目标,1 线性回归应用场景,2 什么是线性回归,1 线性回归API,2 举例,1 常见函数的导数。线性回归,2.6 梯度下降法介绍学习目标,1 全梯度下降算法(FG),2 随机梯度下降算法(SG),3 小批量梯度下降算法(mini-bantch),4 随机平均梯度下降算法(SAG),5 算法比较。线性回归,2.8 欠拟合和过拟合学习目标,1 定义,2 原因以及解决办法,3 正则化,4 维灾难【拓展知识】。线性回归,2.9 正则化线性模型学习目标,1 Ridge Regression (岭回归,又名 Tikhonov regularization),2 Lasso Regression(Lasso 回归),3 Elastic Net (弹性网络),4 Early Stopping [了解],1 API。逻辑回归,3.4 分类评估方法学习目标,1.分类评估方法,2 ROC曲线与AUC指标,3 总结,1 曲线绘制,2 意义解释。决策树算法,4.4 特征工程-特征提取学习目标,1 特征提取,2 字典特征提取,3 文本特征提取。决策树算法,4.5 决策树算法api学习目标,1 泰坦尼克号数据,2 步骤分析,3 代码过程,3 决策树可视化,学习目标。集成学习,5.3 Boosting学习目标,1.boosting集成原理,2 GBDT(了解),3.XGBoost【了解】,4 什么是泰勒展开式【拓展】,学习目标。聚类算法,6.4 模型评估学习目标,1 误差平方和(SSE \The sum of squares due to error):,2 “肘”方法 (Elbow method) — K值确定,3 轮廓系数法(Silhouette Coefficient),4 CH系数(Calinski-Harabasz Index),5 总结。聚类算法,6.6 特征降维学习目标,1 降维,2 特征选择,3 主成分分析,1 需求,2 分析。

全套笔记资料代码移步: 前往gitee仓库查看

感兴趣的小伙伴可以自取哦,欢迎大家点赞转发~


全套教程部分目录:


部分文件图片:

K-近邻算法

学习目标

  • 掌握K-近邻算法实现过程
  • 知道K-近邻算法的距离公式
  • 知道K-近邻算法的超参数K值以及取值问题
  • 知道kd树实现搜索的过程
  • 应用KNeighborsClassifier实现分类
  • 知道K-近邻算法的优缺点
  • 知道交叉验证实现过程
  • 知道超参数搜索过程
  • 应用GridSearchCV实现算法参数的调优

1.8 案例:鸢尾花种类预测—流程实现

1 再识K-近邻算法API

  • sklearn.neighbors.KNeighborsClassifier(n_neighbors=5,algorithm='auto')

  • n_neighbors:

    • int,可选(默认= 5),k_neighbors查询默认使用的邻居数
  • algorithm:{‘auto’,‘ball_tree’,‘kd_tree’,‘brute’}

    • 快速k近邻搜索算法,默认参数为auto,可以理解为算法自己决定合适的搜索算法。除此之外,用户也可以自己指定搜索算法ball_tree、kd_tree、brute方法进行搜索,

      • brute是蛮力搜索,也就是线性扫描,当训练集很大时,计算非常耗时。
      • kd_tree,构造kd树存储数据以便对其进行快速检索的树形数据结构,kd树也就是数据结构中的二叉树。以中值切分构造的树,每个结点是一个超矩形,在维数小于20时效率高。
      • ball tree是为了克服kd树高纬失效而发明的,其构造过程是以质心C和半径r分割样本空间,每个节点是一个超球体。

2 案例:鸢尾花种类预测

2.1 数据集介绍

Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理。Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。关于数据集的具体介绍:

img

2.2 步骤分析

  • 1.获取数据集
  • 2.数据基本处理
  • 3.特征工程
  • 4.机器学习(模型训练)
  • 5.模型评估

2.3 代码过程

  • 导入模块
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
  • 先从sklearn当中获取数据集,然后进行数据集的分割
# 1.获取数据集iris = load_iris()# 2.数据基本处理# x_train,x_test,y_train,y_test为训练集特征值、测试集特征值、训练集目标值、测试集目标值x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=22)
  • 进行数据标准化

  • 特征值的标准化

# 3、特征工程:标准化transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)
  • 模型进行训练预测
# 4、机器学习(模型训练)estimator = KNeighborsClassifier(n_neighbors=9)
estimator.fit(x_train, y_train)# 5、模型评估# 方法1:比对真实值和预测值y_predict = estimator.predict(x_test)
print("预测结果为:\n", y_predict)
print("比对真实值和预测值:\n", y_predict == y_test)# 方法2:直接计算准确率score = estimator.score(x_test, y_test)
print("准确率为:\n", score)

1.9 练一练

同学之间讨论刚才完成的机器学习代码,并且确保在自己的电脑是哪个运行成功

总结

  • 在本案例中,具体完成内容有:
  • 使用可视化加载和探索数据,以确定特征是否能将不同类别分开。

  • 通过标准化数字特征并随机抽样到训练集和测试集来准备数据。
  • 通过统计学,精确度度量进行构建和评估机器学习模型。

  • k近邻算法总结
  • 优点:
    • 简单有效
    • 重新训练的代价低
    • 适合类域交叉样本

      • KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。
    • 适合大样本自动分类

      • 该算法比较适用于样本容量比较大的类域的自动分类,而那些样本容量较小的类域采用这种算法比较容易产生误分。
  • 缺点:
    • 惰性学习

      • KNN算法是懒散学习方法(lazy learning,基本上不学习),一些积极学习的算法要快很多
    • 类别评分不是规格化

      • 不像一些通过概率评分的分类
    • 输出可解释性不强

      • 例如决策树的输出可解释性就较强
    • 对不均衡的样本不擅长

      • 当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。该算法只计算“最近的”邻居样本,某一类的样本数量很大,那么或者这类样本并不接近目标样本,或者这类样本很靠近目标样本。无论怎样,数量并不能影响运行结果。可以采用权值的方法(和该样本距离小的邻居权值大)来改进。
    • 计算量较大

      • 目前常用的解决方法是事先对已知样本点进行剪辑,事先去除对分类作用不大的样本。

1.10 交叉验证,网格搜索

1 什么是交叉验证(cross validation)

交叉验证:将拿到的训练数据,分为训练和验证集。以下图为例:将数据分成4份,其中一份作为验证集。然后经过4次(组)的测试,每次都更换不同的验证集。即得到4组模型的结果,取平均值作为最终结果。又称4折交叉验证。

1.1 分析

我们之前知道数据分为训练集和测试集,但是为了让从训练得到模型结果更加准确。做以下处理

  • 训练集:训练集+验证集
  • 测试集:测试集

1.2 为什么需要交叉验证

交叉验证目的:为了让被评估的模型更加准确可信

问题:那么这个只是对于参数得出更好的结果,那么怎么选择或者调优参数呢?

通常情况下,有很多参数是需要手动指定的(如k-近邻算法中的K值),这种叫超参数。但是手动过程繁杂,所以需要对模型预设几种超参数组合。每组超参数都采用交叉验证来进行评估。最后选出最优参数组合建立模型。

3 交叉验证,网格搜索(模型选择与调优)API:

  • sklearn.model_selection.GridSearchCV(estimator, param_grid=None,cv=None)

  • 对估计器的指定参数值进行详尽搜索

  • estimator:估计器对象
  • param_grid:估计器参数(dict){“n_neighbors”:[1,3,5]}
  • cv:指定几折交叉验证
  • fit:输入训练数据
  • score:准确率
  • 结果分析:

    • bestscore__:在交叉验证中验证的最好结果
    • bestestimator:最好的参数模型
    • cvresults:每次交叉验证后的验证集准确率结果和训练集准确率结果

4 鸢尾花案例增加K值调优

  • 使用GridSearchCV构建估计器
# 1、获取数据集iris = load_iris()# 2、数据基本处理 -- 划分数据集x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=22)# 3、特征工程:标准化# 实例化一个转换器类transfer = StandardScaler()# 调用fit_transformx_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)# 4、KNN预估器流程#  4.1 实例化预估器类estimator = KNeighborsClassifier()# 4.2 模型选择与调优——网格搜索和交叉验证# 准备要调的超参数param_dict = {"n_neighbors": [1, 3, 5]}
estimator = GridSearchCV(estimator, param_grid=param_dict, cv=3)# 4.3 fit数据进行训练estimator.fit(x_train, y_train)# 5、评估模型效果# 方法a:比对预测结果和真实值y_predict = estimator.predict(x_test)
print("比对预测结果和真实值:\n", y_predict == y_test)# 方法b:直接计算准确率score = estimator.score(x_test, y_test)
print("直接计算准确率:\n", score)
  • 然后进行评估查看最终选择的结果和交叉验证的结果
print("在交叉验证中验证的最好结果:\n", estimator.best_score_)
print("最好的参数模型:\n", estimator.best_estimator_)
print("每次交叉验证后的准确率结果:\n", estimator.cv_results_)
  • 最终结果
比对预测结果和真实值:[ True  True  True  True  True  True  True False  True  True  True  TrueTrue  True  True  True  True  True False  True  True  True  True  TrueTrue  True  True  True  True  True  True  True  True  True  True  TrueTrue  True]
直接计算准确率:0.947368421053
在交叉验证中验证的最好结果:0.973214285714
最好的参数模型:KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',metric_params=None, n_jobs=1, n_neighbors=5, p=2,weights='uniform')
每次交叉验证后的准确率结果:{'mean_fit_time': array([ 0.00114751,  0.00027037,  0.00024462]), 'std_fit_time': array([  1.13901511e-03,   1.25300249e-05,   1.11011951e-05]), 'mean_score_time': array([ 0.00085751,  0.00048693,  0.00045625]), 'std_score_time': array([  3.52785082e-04,   2.87650037e-05,   5.29673344e-06]), 'param_n_neighbors': masked_array(data = [1 3 5],mask = [False False False],fill_value = ?)
, 'params': [{'n_neighbors': 1}, {'n_neighbors': 3}, {'n_neighbors': 5}], 'split0_test_score': array([ 0.97368421,  0.97368421,  0.97368421]), 'split1_test_score': array([ 0.97297297,  0.97297297,  0.97297297]), 'split2_test_score': array([ 0.94594595,  0.89189189,  0.97297297]), 'mean_test_score': array([ 0.96428571,  0.94642857,  0.97321429]), 'std_test_score': array([ 0.01288472,  0.03830641,  0.00033675]), 'rank_test_score': array([2, 3, 1], dtype=int32), 'split0_train_score': array([ 1.        ,  0.95945946,  0.97297297]), 'split1_train_score': array([ 1.        ,  0.96      ,  0.97333333]), 'split2_train_score': array([ 1.  ,  0.96,  0.96]), 'mean_train_score': array([ 1.        ,  0.95981982,  0.96876877]), 'std_train_score': array([ 0.        ,  0.00025481,  0.0062022 ])}

1.11 案例2:预测facebook签到位置

1 数据集介绍

FBlocationä"‹ç"

数据介绍:将根据用户的位置,准确性和时间戳预测用户正在查看的业务。

train.csv,test.csv 
row_id:登记事件的ID
xy:坐标
准确性:定位准确性 
时间:时间戳
place_id:业务的ID,这是您预测的目标

官网:[

2 步骤分析

  • 对于数据做一些基本处理(这里所做的一些处理不一定达到很好的效果,我们只是简单尝试,有些特征我们可以根据一些特征选择的方式去做处理)

  • 1 缩小数据集范围 DataFrame.query()

  • 2 选取有用的时间特征

  • 3 将签到位置少于n个用户的删除

  • 分割数据集

  • 标准化处理

  • k-近邻预测

3 代码过程

  • 1.获取数据集
# 1、获取数据集facebook = pd.read_csv("./data/FBlocation/train.csv")
  • 2.基本数据处理
# 2.基本数据处理# 2.1 缩小数据范围facebook_data = facebook.query("x>2.0 & x<2.5 & y>2.0 & y<2.5")# 2.2 选择时间特征time = pd.to_datetime(facebook_data["time"], unit="s")
time = pd.DatetimeIndex(time)
facebook_data["day"] = time.day
facebook_data["hour"] = time.hour
facebook_data["weekday"] = time.weekday# 2.3 去掉签到较少的地方place_count = facebook_data.groupby("place_id").count()
place_count = place_count[place_count["row_id"]>3]
facebook_data = facebook_data[facebook_data["place_id"].isin(place_count.index)]# 2.4 确定特征值和目标值x = facebook_data[["x", "y", "accuracy", "day", "hour", "weekday"]]
y = facebook_data["place_id"]# 2.5 分割数据集x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=22)
  • 特征工程--特征预处理(标准化)
# 3.特征工程--特征预处理(标准化)# 3.1 实例化一个转换器transfer = StandardScaler()# 3.2 调用fit_transformx_train = transfer.fit_transform(x_train)
x_test = transfer.fit_transform(x_test)
  • 机器学习--knn+cv
# 4.机器学习--knn+cv# 4.1 实例化一个估计器estimator = KNeighborsClassifier()# 4.2 调用gridsearchCVparam_grid = {"n_neighbors": [1, 3, 5, 7, 9]}
estimator = GridSearchCV(estimator, param_grid=param_grid, cv=5)# 4.3 模型训练estimator.fit(x_train, y_train)
  • 模型评估
# 5.模型评估# 5.1 基本评估方式score = estimator.score(x_test, y_test)
print("最后预测的准确率为:\n", score)y_predict = estimator.predict(x_test)
print("最后的预测值为:\n", y_predict)
print("预测值和真实值的对比情况:\n", y_predict == y_test)# 5.2 使用交叉验证后的评估方式print("在交叉验证中验证的最好结果:\n", estimator.best_score_)
print("最好的参数模型:\n", estimator.best_estimator_)
print("每次交叉验证后的验证集准确率结果和训练集准确率结果:\n",estimator.cv_results_)

未完待续, 同学们请等待下一期

全套笔记资料代码移步: 前往gitee仓库查看

感兴趣的小伙伴可以自取哦,欢迎大家点赞转发~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/298355.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

EasyCVR视频汇聚平台海康Ehome2.0与5.0设备接入时的配置区别

安防视频监控/视频集中存储/云存储/磁盘阵列EasyCVR平台可拓展性强、视频能力灵活、部署轻快&#xff0c;可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等&#xff0c;以及支持厂家私有协议与SDK接入&#xff0c;包括海康Ehome、海大宇等设备的SDK等。平台既具备传统安…

Vue3学习笔记+报错记录

文章目录 1.创建Vue3.0工程1.1使用vue-cli创建1.2 使用vite创建工程1.3.分析Vue3工程结构 2.常用Composition2.1 拉开序幕的setup2.2 ref函数_处理基本类型2.3 ref函数_处理对象类型2.4 ref函数使用总结 1.创建Vue3.0工程 1.1使用vue-cli创建 查看vue/cli版本&#xff0c;确保…

小程序如何设置余额充值和消费功能

小程序中设置余额充值和消费功能非常重要的&#xff0c;通过让客户在小程序中进行余额充值&#xff0c;不仅可以提高用户粘性&#xff0c;还可以促进消费&#xff0c;增加用户忠诚度。以下是如何在小程序中设置余额充值和消费功能的步骤&#xff1a; 1. **设计充值入口**&…

全国航空机场分布矢量数据/旅游景点poi/全国港口码头分布/地铁站分布/火车站分布/POI矢量数据

民用航空机场是指针对包括跑道型机场、表面直升机场、高架直升机场、船上直升机场、直升机水上平台、滑翔机场、水上机场、有人操纵气球施放场以及其他专供民用航空器起降的划定区域。民用航空机场分为通用航空机场和公共运输机场&#xff1b;不包括临时机场和专用机场。 根据中…

src挖掘技巧总结分享

src挖洞技术分享 src推荐刚入门的新手首选公益src如漏洞盒子、补天src&#xff0c;因为漏洞盒子收录范围广&#xff0c;只要是国内的站点都收入&#xff0c;相比其它src平台挖掘难度非常适合新手。后续可以尝试先从一些小的src厂商入手。 首先是熟能生巧&#xff0c;我一开始挖…

10-用PySpark建立第一个Spark RDD

目录 RDD概念RDD特点建立RDD的方式不同工具建立RDD的方式使用PySpark Shell(交互环境)建立RDD使用VSCode编程建立RDD使用Jupyter Notebook建立RDD 总结 PySpark实战笔记系列第一篇 RDD概念 Apache Spark的核心组件的基础是RDD。所谓的RDD&#xff0c;即弹性分布式数据集&#…

C++读取.bin二进制文件

C读取.bin二进制文件 在C中&#xff0c;可以使用文件输入/输出流来进行二进制文件的读写操作&#xff0c;方便数据的保存和读写。 //C读取bin二进制文件 int read_bin() {std::ifstream file("data_100.bin", std::ios::in | std::ios::binary);if (file) {// 按照…

【美团笔试题汇总】2023-08-26-美团春秋招笔试题-三语言题解(CPP/Python/Java)

&#x1f36d; 大家好这里是KK爱Coding &#xff0c;一枚热爱算法的程序员 ✨ 本系列打算持续跟新小米近期的春秋招笔试题汇总&#xff5e; &#x1f4bb; ACM银牌&#x1f948;| 多次AK大厂笔试 &#xff5c; 编程一对一辅导 &#x1f44f; 感谢大家的订阅➕ 和 喜欢&#x1f…

[蓝桥杯 2017 国 C] 合根植物

[蓝桥杯 2017 国 C] 合根植物 题目描述 w 星球的一个种植园&#xff0c;被分成 m n m \times n mn 个小格子&#xff08;东西方向 m m m 行&#xff0c;南北方向 n n n 列&#xff09;。每个格子里种了一株合根植物。 这种植物有个特点&#xff0c;它的根可能会沿着南北…

docker安装Nexus,maven私服

文章目录 前言安装创建文件夹设置文件夹权限docker创建指令制作docker-compose.yaml文件 查看网站访问网页查看密码 前言 nexus作为私服的maven仓库&#xff0c;在企业级应用中&#xff0c;提供了依赖来源的稳定性&#xff0c;为构建庞大的微服务体系&#xff0c;打下基础 安…

【随笔】Git -- 高级命令(上篇)(六)

&#x1f48c; 所属专栏&#xff1a;【Git】 &#x1f600; 作  者&#xff1a;我是夜阑的狗&#x1f436; &#x1f680; 个人简介&#xff1a;一个正在努力学技术的CV工程师&#xff0c;专注基础和实战分享 &#xff0c;欢迎咨询&#xff01; &#x1f496; 欢迎大…

《QT实用小工具·十四》面板容器控件和图形字体示例

1、概述 源码放在文章末尾 面板容器控件包含如下功能&#xff1a; 支持所有widget子类对象&#xff0c;自动产生滚动条。 支持自动拉伸自动填充。 提供接口获取容器内的所有对象的指针。 可设置是否自动拉伸宽度高度。 可设置设备面板之间的间距和边距。 超级图形字体类…

蓝桥杯单片机真题实践篇

这里就不完全写思路过程代码什么的&#xff0c;这一篇文章就写我在训练真题中遇到的过程。 &#xff08;呜呜呜&#xff0c;时间不够辣&#xff0c;能做多少算多少吧....&#xff09; 十三届省赛题 问题1&#xff1a;数码管的数字消影不明显 &#xff08;参考&#xff1a;蓝…

LeetCode-热题100:21. 合并两个有序链表

题目描述 将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 示例 1&#xff1a; 输入&#xff1a; l1 [1,2,4], l2 [1,3,4] 输出&#xff1a; [1,1,2,3,4,4] 示例 2&#xff1a; 输入&#xff1a; l1 [], l2 [] 输出…

大数据基础设施搭建 - Spark

文章目录 一、解压压缩包二、修改配置文件conf/spark-env.sh三、测试提交Spark任务四、Spark on Hive配置4.1 创建hive-site.xml&#xff08;spark/conf目录&#xff09;4.2 查看hive的hive-site.xml配置与3.1配置的是否一致4.3 测试SparkSQL4.3.1 启动SparkSQL客户端&#xff…

android APP monkey 测试

monkey 测试 一、电脑ADB安装及使用详解1、什么是 Monkey 测试2、什么是ADB3、ADB的作用4、安装前提条件5、ADB下载6、ADB安装与配置 二、连接安卓手机检查是否连接上安卓手机windows端安装ADB驱动 三、 monkey测试操作指令演示指令APP包名查看方式测试效果 一、电脑ADB安装及使…

MATLAB绘制堆叠填充图--巧用句柄

MATLAB绘制堆叠填充图–巧用句柄 目录 MATLAB绘制堆叠填充图--巧用句柄1. 主要原理讲解1.1 主要函数1.2 句柄原理 2. 绘图示例2.1 准备数据2.2 绘制堆叠填充图-使用句柄控制图形属性2.3 设置填充颜色和样式2.4 添加标题和标签2.5 绘图效果 3. 结语 堆叠填充图是一种常见的数据可…

Mac反编译APK

文章目录 第一种方式: brew installapktool 使用说明dex2jar 使用说明 第二种方式: 下载安装包apktool 使用说明 (根据官方介绍没有操作成功,后续成功再更新这里)dex2jar 使用说明 安装 JD-GUI 查看jar包中的class文件JD-GUI 使用说明 第一种方式: brew install 安装过程可能很…

Phpstorm配置Xdebug

步骤 1、先去官网找到对应的php xdebug的版本 2、配置phpstorm断点调试 网址&#xff1a;https://xdebug.org/ 查看php对应的xdebug版本&#xff1a;Xdebug: Support — Tailored Installation Instructions 1.1查看对应php xdebug版本 全选&#xff0c;复制到目标网址 我…

微软detours代码借鉴点备注

comeasy 借鉴点1 Loadlibray的时间选择 注入库wrotei.dll&#xff0c;为了获取istream的接口&#xff0c;需要loadlibrary&#xff0c;但是在dllmain中是不建议这样做的。因此&#xff0c;动态库在dllmain的时候直接挂载了comeasy.exe的入口 //获取入口 TrueEntryPoint (i…