回归预测 | Matlab基于CPO-GPR基于冠豪猪算法优化高斯过程回归的多输入单输出回归预测

回归预测 | Matlab基于CPO-GPR基于冠豪猪算法优化高斯过程回归的多输入单输出回归预测

目录

    • 回归预测 | Matlab基于CPO-GPR基于冠豪猪算法优化高斯过程回归的多输入单输出回归预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

Matlab基于CPO-GPR基于冠豪猪算法优化高斯过程回归的数据回归预测(完整源码和数据)
1.Matlab基于CPO-GPR基于冠豪猪算法优化高斯过程回归的输入多个特征,输出单个变量,多输入单输出回归预测;
3.多指标评价,评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高;
4.粒子群算法优化参数为:优化核函数超参数 sigma,标准差,初始噪声标准差;
5.excel数据,方便替换,运行环境2018及以上。

程序设计

  • 完整程序和数据获取方式(资源处下载):Matlab基于CPO-GPR基于冠豪猪算法优化高斯过程回归的数据回归预测
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
% restoredefaultpath
%%  导入数据
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
f_ =size(P_train, 1); %输入特征维度
M = size(P_train, 2);
N = size(P_test, 2);
%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  转置以适应模型
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  超参数设置
Best_pos = [0.6, 0.7, 30];    % 优化下界%%  仿真测试
t_sim1 = predict(net, p_train);
t_sim2 = predict(net, p_test );
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 数据转置
T_sim1=T_sim1';
T_sim2 =T_sim2';
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%
%决定系数
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%
%均方误差 MSE
mse1 = sum((T_sim1 - T_train).^2)./M;
mse2 = sum((T_sim2 - T_test).^2)./N;
%%
%RPD 剩余预测残差
SE1=std(T_sim1-T_train);
RPD1=std(T_train)/SE1;
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
SE=std(T_sim2-T_test);
RPD2=std(T_test)/SE;
%% 平均绝对误差MAE
MAE1 = mean(abs(T_train - T_sim1));
MAE2 = mean(abs(T_test - T_sim2));
%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1)./T_train));
MAPE2 = mean(abs((T_test - T_sim2)./T_test));
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 测试集误差图
figure  
ERROR3=T_test-T_sim2;
plot(T_test-T_sim2,'b-*','LineWidth',1.5)
xlabel('测试集样本编号')
ylabel('预测误差')
title('测试集预测误差')
grid on;
legend('GPR预测输出误差')
%% 打印出评价指标
disp(['-----------------------误差计算--------------------------'])
disp(['评价结果如下所示:'])
disp(['平均绝对误差MAE为:',num2str(MAE2)])
disp(['均方误差MSE为:       ',num2str(mse2)])
disp(['均方根误差RMSEP为:  ',num2str(error2)])
disp(['决定系数R^2为:  ',num2str(R2)])
disp(['剩余预测残差RPD为:  ',num2str(RPD2)])
disp(['平均绝对百分比误差MAPE为:  ',num2str(MAPE2)])

参考资料

[1]https://blog.csdn.net/kjm13182345320/article/details/124443069?spm=1001.2014.3001.5501
[2]https://blog.csdn.net/kjm13182345320/article/details/124443735?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/298991.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Consul】基于Golang实现Consul服务的注册、注销、修改、监控注册的服务变化、实时同步服务信息机制

【Consul】基于Go实现Consul服务的注册、注销、修改、监控注册的服务变化、实时同步服务信息机制 大家好 我是寸铁👊 总结了一篇【Consul】基于Go实现Consul服务的注册、注销、修改、监控注册的服务变化、实时同步服务信息机制✨ 这应该是目前全网最全的使用golang手…

Git命令(1)[删除,恢复与移动]

文章目录 1.删除文件1.1命令----rm <filename>1.2命令----git rm <filename>1.1命令----git rm <filename> -f 2.恢复文件2.1命令----git restore <filename>2.1命令----git restore --staged <filename> 3.重命名文件3.1命令----mv 旧文件 新文…

Node.js------Express

◆ 能够使用 express.static( ) 快速托管静态资源◆ 能够使用 express 路由精简项目结构◆ 能够使用常见的 express 中间件◆ 能够使用 express 创建API接口◆ 能够在 express 中启用cors跨域资源共享 一.初识Express 1.Express 简介 官方给出的概念&#xff1a;Express 是基…

CSS - 你实现过0.5px的线吗

难度级别:中级及以上 提问概率:75% 我们知道在网页显示或是网页打印中,像素已经是最小单位了,但在很多时候,即便是最小的1像素,精度却不足以呈现所需的线条精度和细节。因此,为了在网页显示和网页打印中呈现更加细致的线条,为了在视觉…

带你了解自动驾驶中的功能安全

谈一谈自动驾驶中的功能安全 附赠自动驾驶学习资料和量产经验&#xff1a;链接 一 概述 汽车涉及到人的生命财产安全&#xff0c;谈汽车首先要谈的就是安全。目前自动驾驶的安全主要分为三大块&#xff1a;功能安全&#xff0c;网络&#xff08;信息&#xff09;安全&#xf…

【LeetCode】--- 动态规划 集训(二)

目录 一、63. 不同路径 II1.1 题目解析1.2 状态转移方程1.3 解题代码 二、931. 下降路径最小和2.1 题目解析2.2 状态转移方程2.3 解题代码三、174. 地下城游戏3.1 题目解析3.2 状态转移方程3.3 解题代码 一、63. 不同路径 II 题目地址&#xff1a; 不同路径 II 一个机器人位于…

腾讯云(CVM)托管进行权限维持

前言 刚好看到一个师傅分享了一个阿里云ECS实战攻防&#xff0c;然后想到了同样利用腾讯云CVM的托管亦可实现在实战攻防中的权限维持。 简介 腾讯云自动化助手&#xff08;TencentCloud Automation Tools&#xff0c;TAT&#xff09;是一个原生运维部署工具&#xff0c;它可…

“Linux 三剑客”,通常指的是三个经典的命令行工具:grep、sed 和 awk

1、grep&#xff1a; 简介&#xff1a;grep 是一个强大的文本搜索工具&#xff0c;可以用于在文件中查找匹配特定模式的行。示例&#xff1a; 搜索包含特定关键词的行&#xff1a; grep "keyword" filename 递归搜索目录下所有文件&#xff1a; grep -r define zj…

java面试题(Redis)

事情干的差不多了&#xff0c;开刷面试题和算法&#xff0c;争取在短时间内快速成长&#xff0c;理解java面试的常见题型 一、redis使用场景&#xff1a; 缓存&#xff1a;穿透、击穿、雪崩 双写一致、持久化 数据过期、淘汰策略 分布式锁&#xff1a;setnx、redisson 计数…

Flutter Boost 3

社区的 issue 没有收敛的趋势。 设计过于复杂&#xff0c;概念太多。这让一个新手看 FlutterBoost 的代码很吃力。 这些问题促使我们重新梳理设计&#xff0c;为了彻底解决这些顽固的问题&#xff0c;我们做一次大升级&#xff0c;我们把这次升级命名为 FlutterBoost 3.0&am…

Redis -- 缓存穿透问题解决思路

缓存穿透 &#xff1a;缓存穿透是指客户端请求的数据在缓存中和数据库中都不存在&#xff0c;这样缓存永远不会生效&#xff0c;这些请求都会打到数据库。 常见的解决方案有两种&#xff1a; 缓存空对象 优点&#xff1a;实现简单&#xff0c;维护方便 缺点&#xff1a; 额外…

讲讲你对数据结构-线性表了解多少?

线性表 - 数组和矩阵 当谈到线性表时&#xff0c;数组和矩阵是两种常见的数据结构。 数组&#xff08;Array&#xff09;&#xff1a; 数组是有序的元素集合&#xff0c;可以通过索引来访问和操作其中的元素。它是最简单、最基本的数据结构之一。数组的特点包括&#xff1a; …

paddlepaddle模型转换onnx指导文档

一、检查本机cuda版本 1、右键找到invdia控制面板 2、找到系统信息 3、点开“组件”选项卡&#xff0c; 可以看到cuda版本&#xff0c;我们这里是cuda11.7 cuda驱动版本为516.94 二、安装paddlepaddle环境 1、获取pip安装命令 &#xff0c;我们到paddlepaddle官网&#xff…

2012年认证杯SPSSPRO杯数学建模C题(第二阶段)碎片化趋势下的奥运会商业模式全过程文档及程序

2012年认证杯SPSSPRO杯数学建模 C题 碎片化趋势下的奥运会商业模式 原题再现&#xff1a; 从 1984 年的美国洛杉矶奥运会开始&#xff0c;奥运会就不在成为一个“非卖品”&#xff0c;它在向观众诠释更高更快更强的体育精神的同时&#xff0c;也在攫取着巨大的商业价值&#…

idea2023.2.1 java项目-web项目创建-servlet类得创建

如何创建Java项目 1.1 方式1&#xff1a; 1.2 方式&#xff1a; 1.3 方式 如何创建web项目 方式 ----- 推荐 如何创建servlet类 复制6 中得代码 给servlet 配置一个路径 启动tomcat 成功了

【星海随笔】Ubuntu22.04忘记密码

服务器篇&#xff1a; 有问题可留言。 第一步 远程console界面进入该设备 并重启该设备 如果看到这个界面情况 则点击右上角按钮 【发送 CtrlAltDelete】 调出grub启动菜单 NOTE&#xff1a;启动的后半段去点击这个按钮&#xff0c;前半段一直点会一直重启 如果是直连服务器&a…

Linux-4 gcc和makefile

Linux编译器-gcc/g使用 1.设计样例 c语言&#xff1a;linux中用的stdc99版本--可能会出现其他问题 c&#xff1a;Linux中用的stdc11--使用c11版本 Linux没有文件格式的区分&#xff0c;但是编译器区分 gcc编译器的文件格式是filename.c g编译器的文件格式是filename.cc或者fil…

docker的安装及入门指令

目录 一、将docker安装到云服务器步骤 1.更新系统yum版本 2.安装所需依赖 3.添加docker仓库设置(使用的是阿里云) 4.安装docker引擎 5.启动docker并开启自动启动 6. 检查是否安装成功&#xff0c;成功会显示相应版本&#xff0c;否则安装失败 二、docker常用命令 1.从…

Javascript/Node.JS中如何用多种方式避免属性为空(cannot read property of undefined ERROR)

>>>>>>问题 "cannot read property of undefined" 是一个常见的 JavaScript 错误&#xff0c;包含我在内很多人都会遇到&#xff0c;表示你试图访问一个未定义&#xff08;undefined&#xff09;对象的属性。这通常是因为你在访问一个不存在的对象…

【第十六篇】使用BurpSuite实现匹配替换(实战案例)

在Burp中可配置匹配和替换规则,当我们使用浏览器请求程序时,这些规则会自动修改我们的请求和响应。 在某些环境下,我们可以修改 IP 地址,让服务器相信我们属于其本地网络,从而实现与原本无法访问的内部基础设施进行通信。下面将以IP欺骗为例进行操作讲解。 如图,admin目…