LabVIEW深度学习

目录

  • 一、配置环境
    • 1.1、显卡选择
    • 1.2、下载显卡驱动
    • 1.3、下载并安装Anaconda
    • 1.4、配置Anaconda软件包下载服务器
    • 1.5、配置虚拟环境tf_gpu
    • 1.6、安装vscode
    • 1.7、安装tensorflow
    • 1.8、下载安装Git
    • 1.9、安装TensorFlow Object Detection API框架
    • 1.10、安装依赖的python软件包
    • 1.11、配置环境变量
    • 1.12、安装COCO API
    • 1.13、编译proto文件
    • 1.14、测试框架安装
    • 1.15、安装LabelImg
  • 二、部署流程
    • 1.1、 选择预训练库
    • 1.2、标注图片
    • 1.3、修改pbtxt文件
    • 1.4、 Xml转CSV文件
    • 1.5、CSV转tfrecord文件
    • 1.6、修改config文件
    • 1.7、训练
    • 1.8、Tensorboard观察训练过程
    • 1.9、评估模型
    • 1.10、检查点文件转pb
    • 1.11、识别
  • 三、快捷训练
  • 四、LabVIEW调用

本文采用tensorflow开源的object detection api部署深度学习pb文件。
用LabVIEW2020自带的deep learning工具进行检测。
主要工作量在于object detection api的部署,主要参考《 深度学习图像识别技术:基于TensorFlow Object Detection API和OpenVINO™ 工具套件》
环境:

  • window10
  • anaconda3(64bit)
  • python 3.6
  • vscode(编辑平台,可选)
  • labview2020
    硬件:
    1660Ti 6G

一、配置环境

  • 硬件选型(显卡)
  • 驱动软件版本选择和安装(显卡驱动)
  • python版本选择和安装(用anaconda安装,本文python 3.6)
  • TensorFlow Obejct Detection API版本选择和安装
  • 依赖的全部软件和工具版本和安装
软件名称用途
NVIDIA显卡驱动TnesorFlow GPU版本依赖的显卡驱动软件
Anaconda管理Python软件包和环境的工具
PythonTensorFlow依赖的程序开发语言
TensorFlowGoogle开源的机器学习库
TensorFlow Object Detection API深度学习目标检测算法的软件框架

1.1、显卡选择

显卡选择建议参考链接:
https://timdettmers.com/2019/04/03/which-gpu-for-deep-learning/
本文使用1660Ti
入门级别参考:GeForce GTX 1050/1060/1070

1.2、下载显卡驱动

驱动下载链接:
https://www.nvidia.com/Download/index.aspx?lang=en-us

  • 根据所用显卡下载驱动,本文使用1660Ti,选择的驱动如下:
    在这里插入图片描述
  • Version保证大于410.x,安装可以选项可以全部默认在这里插入图片描述 - 确认安装完成在这里插入图片描述

1.3、下载并安装Anaconda

国内镜像下载链接:
https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/
本文使用2019.07(64bit)版本:
在这里插入图片描述

  • 注意勾选"Add Anaconda to my PATH environment variable"
    在这里插入图片描述

1.4、配置Anaconda软件包下载服务器

在默认路径C:\Users\Administrator里有.condar文件,修改为:

show_channel_urls:true
channel_alias:http://mirrors.tuna.tsinghua.edu.cn/anaconda
default_channels:- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom channels:conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudmsys2:https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudbioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudmenpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudpytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudsimpleitk:https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudssl 
verify:true

1.5、配置虚拟环境tf_gpu

打开anaconda→选中"Environment"→点击"create"→Name修改为"tf_gpu",python选中"3.6"
在这里插入图片描述
打开Anaconda如果一直停留在初始化的界面,可以通过以下方法解决
① 在路径:C:\ProgramData\Anaconda3\Lib\site-packages\anaconda_navigator\api中,找到conda_api.py,搜索yaml.load,修改为yaml.safeload
在这里插入图片描述

② 重启电脑后,再打开就能正常打开了。
常用的一些conda指令可以参考以下网站:
https://docs.conda.io/projects/conda/en/latest/user-guide/cheatsheet.html
本文常用的有:

  1. conda install:安装当前python环境对应的工具包
    若安装的Python软件只依赖Python软件包,则遵循官方推荐,使用pip install安装,例如安装opencv-python;若安装的Python软件不仅依赖Python软件包,还依赖非Python软件包,则使用conda install,例如安装tensorflow-gpu,简单方便。
  2. conda activate:激活指定的虚拟环境,例如conda activate tf_gpu
  3. conda info –envs(cmd):可以查看当前conda的所有环境,带有星号的是当前激活的环境

1.6、安装vscode

vscode仅用修改对应的代码行,不作调试要求,相当于文本编辑软件,可以更换。
下载链接:
https://code.visualstudio.com/

1.7、安装tensorflow

1、win+R→输入"cmd"后,执行
2、命令行中输入后回车,等待安装完成

conda activate tf_gpu
conda install tensorflow-gpu=1.13.1

3、命令行中,输入"python"后回车,后再输入"import tensorflow as tf",显示如下信息,即安装完整
在这里插入图片描述

1.8、下载安装Git

下载Git,直接下载最新版本的Git就行,下载链接:
https://git-scm.com/

1.9、安装TensorFlow Object Detection API框架

TensorFlow Object Detection API是一个在TensorFlow基础上开发出来的用于计算机视觉领域实现在图像中检测并定位多个目标物体的软件框架
1、建立文件夹目录结构,本文源路径为"D:\deep_learning\src_code\tf_train"
在这里插入图片描述

  • addons文件夹:用于存放附加组件或其他软件工具
  • workspaces文件夹:用于存放每一个具体项目的文件
    2、在tf_train空白地方右键→选中"open Git Bash here"
    在这里插入图片描述
    3、在Git Bash中输入以下指令
git clone -b r1.13.0 https://github.com/tensorflow/models

如果报Git SSL错误的话,则需要先关闭SSL校验
输入

git config --global http.sslverify false

在这里插入图片描述
如果Git太慢,可以从云盘下载
https://pan.baidu.com/s/1klGCW0ckE2BQvY4cRscRYA#list/path=%2F
提取码: h9m3
4、下载完成后,路径变为:
在这里插入图片描述

1.10、安装依赖的python软件包

软件包名称用途
matplotlib绘制图表
pillow图像处理
lxml处理XML和HTML
contextlib2with语句上下文管理
cython让Python脚本支持C语言扩展的编译器
opencv-pythonOpenCV的python库
1、win+R→输入"cmd"后,执行
2、命令行中输入后回车,等待安装完成
conda activate tf_gpu

3、再输入

pip install matplotlib pillow lxml contextlib2 cython opencv-python

如果碰到个别的出错,可以单独执行。

1.11、配置环境变量

为了让Python可以找到TensorFlow Object Detection API依赖的软件模块,需要配置环境变量,本文添加以下三个路径:

D:\deep_learning\src_code\tf_train\models\research
D:\deep_learning\src_code\tf_train\models\research\slim
D:\deep_learning\src_code\tf_train\models\research\object_detection

1、打开"此电脑"→右键空白处,点击"属性"
在这里插入图片描述
2、点击高级系统设置
在这里插入图片描述
3、点击环境变量
在这里插入图片描述
4、添加对应的环境变量
在这里插入图片描述

1.12、安装COCO API

1、在addons文件夹中点击鼠标右键,选中Git Bash,在Git Bash中输入

git clone https://github.com/philferriere/cocoapi

下载完成后,文件目录变为
在这里插入图片描述
2、在命令行中激活tf_gpu环境→输入后执行,命令行进入PythonAPI

cd /d D:\deep_learning\src_code\tf_train\addons\cocoapi\PythonAPI

3、再执行

python setup.py install

1.13、编译proto文件

1、进入"D:\deep_learning\src_code\tf_train\models\research"路径
在这里插入图片描述
2、在文件路径中输入cmd,弹出命令行
在这里插入图片描述
3、激活tf_gpu环境后,输入以下命令执行后,完成proto文件的编译

for /f gi in('dir /b object detection\protos\*.proto')do protoc object detection\protos\&i--python out=.

1.14、测试框架安装

1、从https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md下载ssd_inception_v2_coco
在这里插入图片描述

2、下载完成后,解压到路径"D:\deep_learning\src_code\tf_train\models\research\object_detection"中
3、注释掉26行"import matplotlib; matplotlib.use(‘Agg’)"
在这里插入图片描述
4、在命令行中激活tf_gpu环境,然后执行object_detection_example_1.py

5、执行结果如下,说明检测环境配置完成。
在这里插入图片描述

1.15、安装LabelImg

激活tf_gpu,运行pip install labelimg

二、部署流程

1.1、 选择预训练库

预训练网址:
models/research/object_detection/g3doc/tf1_detection_zoo.md at master • tensorflow/models (github.com)

本文选用ssd_mobilenet_v2_coco。在这里插入图片描述

其中模型名称含义:
ssd_mobilenet_v2_coco:该模型使用了SSD(Single Shot Multibox Detector)目标检测算法,mobilenet特征提取网络,在COCO数据集上进行了训练。

  • 速度(Speed)
    是指该模型在NVIDIA GeForce GTX TITAN X显卡上处理600×600分辨率图像(包含预处理和后处理)的速度,这个数值可以让大家对模型运行的相对快慢有个感性的认识。例如,ssd_resnet_50_fpn_coco的运行速度就比ssd_mobilenet_v1_coco要慢。
  • 平均精度均值(mAP)
    是指该模型识别多类物体时,每类物体识别精度(AP)的平均值。mAP值越高,表明该模型识别精度越高。例如,ssd_resnet_50_fpn_coco的识别精度就比ssd_mobilenet_v1_coco要高。
  • 输出(outputs)
    有两种类型:边界框(boxes)和掩膜(Masks)
    下载完的模型,放到pre_trained_model文件夹里解压
    在这里插入图片描述

1.2、标注图片

1、准备好对应的图集。
2、用labelImg标注图片,并建立对应文件夹,包括images里面的eval,test,train,其中train里面包含图片和对应标注后以图片命名的xml文件,test是部分标注后的图片,eval是只有部分图片。
在这里插入图片描述

labelImg常用功能有:

  • w:启用矩形框
  • D:下一张
  • ctrl+s:保存
  • 打开在labelImg路径下的data文件夹predefined_classes.txt文件,将里面的预定义标签修改为对应的类别,本文是cat和dog。

1.3、修改pbtxt文件

修改"D:\deep_learning\src_code\tf_train\workspaces\cats_dogs\annotations"路径中的label_map.pbtxt文件。

item {id: 1name: "cat"
}
item {id: 2name: "dog"
}

1.4、 Xml转CSV文件

执行xml_to_csv.py

  • Train标注数据转csv:
Python xml_to_csv.py -i D:\deep_learning\src_code\tf_train\workspaces\cats_dogs\images\train -o D:\deep_learning\src_code\tf_train\workspaces\cats_dogs\annotations\train_labels.csv
  • Eval标注数据转csv:
Python xml_to_csv.py -i D:\deep_learning\src_code\tf_train\workspaces\cats_dogs\images\eval-o D:\deep_learning\src_code\tf_train\workspaces\cats_dogs\annotations\eval_labels.csv

1.5、CSV转tfrecord文件

  • 修改generate_tfrecord.py:
# 以猫狗为例,label0=cat,label1=dog,在pbtxt文件中也是
flags.DEFINE_string('label0','','Name of class[0] label')
flags.DEFINE_string('label1','','Name of class[1] label')
flags.DEFINE_string('img_path','','Name of class[1] label')
FLAGS = flags.FLAGS
# TO-DO replace this with label map
def class_text_to_int(row_label):if row_label == "cat":     # 需改动为自己的分类return 1elif row_label == "dog":return 2else:None
  • 执行csv转tfrecord(train)
Python generate_tfrecord.py --label0=cat --label1=dog --csv_input= D:\deep_learning\src_code\tf_train\workspaces\cats_dogs\annotations\train_labels.csv --output_path= D:\deep_learning\src_code\tf_train\workspaces\cats_dogs\annotations\train.tfrecord --img_path= D:\deep_learning\src_code\tf_train\workspaces\cats_dogs\images\train
  • 执行csv转tfrecord(eval)
Python generate_tfrecord.py --label0=cat --label1=dog --csv_input= D:\deep_learning\src_code\tf_train\workspaces\cats_dogs\annotations\eval_labels.csv --output_path= D:\deep_learning\src_code\tf_train\workspaces\cats_dogs\annotations\eval.tfrecord --img_path= D:\deep_learning\src_code\tf_train\workspaces\cats_dogs\images\eval

1.6、修改config文件

路径在models\research\object_detection\samples\configs里,把对应的ssd_inception_v2_coco_config文件复制到training文件夹下。
在这里插入图片描述

① 修改num_classes:2,猫狗只有两类:
在这里插入图片描述

② 修改batch_size:24,可根据显存和图像大小调整,越大越耗费,速度越快,太大会报错
在这里插入图片描述
③ 把fine_tune_checkpoint删除(可选)
④ Num_step:2000,根据loss值调整
⑤ Input_path配置为train.tfrecord路径
⑥ Label_map_path改为label_map.pbtxt路径
⑦ Input_path改为eval.tfrecord路径
⑧ Label_map_path改为label_map.pbtxt路径
在这里插入图片描述

1.7、训练

执行train.py脚本:

Python train.py --logtostderr --train_dir=training\ --pipeline_config_path=training\ssd_inception_v2_coco.config

1.8、Tensorboard观察训练过程

在cat_and_dog文件夹中输入cmd,输入

Tensorboard --logdir=training\
  • Training文件夹里面是包含所有检查点文件的文件夹
  • 如果网址打开不了,要把网址改为localhost

1.9、评估模型

Num_example要改为对应评估的图像个数
Max_evals验证循环次数
在这里插入图片描述

修改tf_train\models\research\object_detection\utils\object_detection_evaluation.py,unicode改为str
在这里插入图片描述
把tf_train\models\research\object_detection\legacy\eval.py文件拷到tf_train\workspaces\cats_dogs中,运行脚本

Python eval.py --logtostderr --checkpoint_dir=training --eval_dir=evaluation --pipeline_config_path=training\ssd_inception_v2_coco.config

1.10、检查点文件转pb

要注意ckpt后面的数值,需要在training文件夹里面存在一样名称的文件。
这个就是LabVIEW最终调用的PB文件。

Python export_inference_graph.py --input_type image_tensor --pipeline_config_path training\ssd_inception_v2_coco.config --trained_checkpoint_prefix training\model.ckpt-2000 --output_directory trained_frozen_models\cats_dogs_model

在这一步生成pb文件,就可以直接应用于LabVIEW的deep learning工具包进行图像识别了。

1.11、识别

① 修改模型路径:

# 第二步,导入模型ssd_inception_v2_coco_2018_01_28到内存
# ssd_inception_v2_coco_2018_01_28文件夹应与本程序放在models\research\object_detection文件夹下
# -----------------------------------------------------------
#MODEL_NAME = 'ssd_inception_v2_coco_2018_01_28'
MODEL_NAME='pre_trained_model/ssd_inception_v2_coco'
PATH_TO_FROZEN_GRAPH = MODEL_NAME + '/frozen_inference_graph.pb'
PATH_TO_LABELS = os.path.join('annotations', 'label_map.pbtxt')

② 修改图片路径:

# ## 从单张图片中检测对象子程序
# ## 图片名称:image1.jpg, image2.jpg,存放在
# ## models\research\object_detection\test_images文件夹下
#PATH_TO_IMAGES_DIR = 'test_images'
PATH_TO_IMAGES_DIR='images/eval'
TEST_IMAGE_PATHS = [os.path.join(PATH_TO_IMAGES_DIR, 'dog.{0:d}.jpg'.format(i)) for i in range(1,3)]

③ 输入命令行进行识别:python object_detection_example_2.py

三、快捷训练

以上路径生成和训练过程可以快捷完成
1、在激活tf_gpu环境后
2、快捷生成路径:

Python create_directories.py -n cats_dogs

3、快捷训练

python one_command_train.py --step 500 --batch_size 12

四、LabVIEW调用

可以直接使用LabVIEW2020(64bit)的例程:
1、菜单栏"help"→点击"find examples"
请添加图片描述
2、选中"Toolkits and Modules"→"Vision"→"Deep Learing Object Detection"→"Deep Learing Object Detection(tensorflow)"
请添加图片描述
3、将pb文件路径修改为训练好的pb文件路径,识别图修改为猫狗图片路径,标签和名称修改为cat和dog
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/299377.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

包子凑数【蓝桥杯】/完全背包

包子凑数 完全背包 完全背包问题和01背包的区别就是,完全背包问题每一个物品能取无限次。 思路:当n个数的最大公约数不为1,即不互质时,有无限多个凑不出来的,即n个数都可以表示成kn,k为常数且不为1。当n个…

Vue关键知识点

watch侦听器 Vue.js 中的侦听器(Watcher)是 Vue提供的一种响应式系统的核心机制之一。 监听数据的变化,并在数据发生变化时执行相应的回调函数。 目的:数据变化能够自动更新到视图中 原理: Vue 的侦听器通过观察对象的属性&#…

Redis实战篇-集群环境下的并发问题

实战篇Redis 3.7 集群环境下的并发问题 通过加锁可以解决在单机情况下的一人一单安全问题,但是在集群模式下就不行了。 1、我们将服务启动两份,端口分别为8081和8082: 2、然后修改nginx的conf目录下的nginx.conf文件,配置反向代…

蓝桥杯杯赛之深度优先搜索优化《1.分成互质组》 《 2.小猫爬山》【dfs】【深度搜索剪枝优化】【搜索顺序】

文章目录 思想例题1. 分成互质组题目链接题目描述【解法一】【解法二】 2. 小猫爬山题目链接题目描述输入样例:输出样例:【思路】【WA代码】【AC代码】 思想 本质为两种搜索顺序: 枚举当前元素可以放入哪一组枚举每一组可以放入哪些元素 操…

天眼护航 安全无界:天通哨兵PS02—电力巡检保护的智能利器

在电力行业中,输电线路的安全稳定运行对于保障社会经济活动至关重要。然而,广阔的输电线路常常穿越复杂的地形和恶劣的自然环境,给电力巡检和保护工作带来了巨大挑战。 为了提高巡检效率和响应速度,更好地保障电力设施的安全运行…

鸿蒙OS元服务开发:【(Stage模型)学习窗口沉浸式能力】

一、体验窗口沉浸式能力说明 在看视频、玩游戏等场景下,用户往往希望隐藏状态栏、导航栏等不必要的系统窗口,从而获得更佳的沉浸式体验。此时可以借助窗口沉浸式能力(窗口沉浸式能力都是针对应用主窗口而言的),达到预…

聚能共创下一代智能终端操作系统 软通动力荣膺“OpenHarmony优秀贡献单位”

近日,由开放原子开源基金会指导,以“开源共享未来”为主题的OpenHarmony社区年会在北京成功举办。本次活动汇集OpenHarmony项目群共建单位及生态伙伴等多方力量,旨在对2023年度OpenHarmony年度开源事业全面总结的同时,吸引更多伙伴…

HFSS仿真环形耦合器学习笔记

HFSS仿真环形耦合器学习笔记 文章目录 HFSS仿真环形耦合器学习笔记1、 理论基础2、 设计分析3、 仿真验证1、 求解器设置2、 建模3、 激励方式设置4、 边界条件设置5、 扫频设置6、 设计检查,仿真分析7、 数据后处理 1、 理论基础 环形定向耦合器的结构示意图如图所…

HTML5.Canvas简介

1. Canvas.getContext getContext(“2d”)是Canvas元素的方法,用于获取一个用于绘制2D图形的绘图上下文对象。在给定的代码中,首先通过getElementById方法获取id为"myCanvas"的Canvas元素,然后使用getContext(“2d”)方法获取该Ca…

【JAVASE】带你了解面向对象三大特性之一(继承)

✅作者简介:大家好,我是橘橙黄又青,一个想要与大家共同进步的男人😉😉 🍎个人主页:再无B~U~G-CSDN博客 1.继承 1.1 为什么需要继承 Java 中使用类对现实世界中实体来…

基于SpringBoot Vue超市管理系统

一、📝功能介绍 基于SpringBoot Vue超市管理系统 角色:管理员、员工 管理员:管理员登录进入超市管理系统的实现可以查看首页、个人中心、员工管理、商品类型管理、商品信息管理、商品进货管理、商品出库管理、商品销量管理、销售退回管理等…

Jettison 1.8.7直装版 外部磁盘辅助弹出

Jettison 是一款适用于 macOS 的实用工具,旨在简化外部驱动器的管理。它可以自动卸载和重新挂载外部驱动器,帮助您更方便地使用和保护您的存储设备。 软件下载:Jettison 1.8.7直装版下载 自动卸载和重新挂载:Jettison 可以在您离开…

ideaSSM 校园兼职招聘平台bootstrap开发mysql数据库web结构java编程计算机网页源码maven项目

一、源码特点 idea 开发 SSM 校园兼职招聘平台是一套完善的信息管理系统,结合SSM框架和bootstrap完成本系统,对理解JSP java编程开发语言有帮助系统采用SSM框架(MVC模式开发),系统具有完整的源代码和数据库&#xff…

phpstorm设置头部注释和自定义注释内容

先说设置位置: PhpStorm中文件、类、函数等注释的设置在:setting-》Editor-》FIle and Code Template-》Includes-》PHP Function Doc Comment下设置即可,其中方法的默认是这样的: /** ${PARAM_DOC} #if (${TYPE_HINT} ! "…

蓝牙学习九(定向广播 ADV_DIRECT_IND)

一、简介 广播类型有如下: 非定向可连接广播(ADV_IND)。可连接的非定向广播,表示当前设备可以接受任何设备的连接请求。 定向可连接广播(ADV_DIRECT_IND)。可连接的定向广播,设备不能被主动扫描…

VTK中polydata的属性数据结构表示和用法

vtk中通过vtkDataArray进行数据的存储,通过vtkDataObject进行可视化数据的表达,在vtkDataObject内部有一个vtkFieldData的实例,负责对数据的表达: vtkFieldData存储数据的属性数据,该数据是对拓扑结构和几何结构信息的…

Unity自定义框架(1)-----------单例模式

前言: Unity作为一款强大的游戏开发引擎,其基础框架的设计对于项目的结构和性能有着重要的影响。其中,单例模式是一种常用的设计模式,用于确保一个类只有一个实例,并提供一个全局访问点。 什么是单例模式&#xff1f…

深入理解Java异常处理机制(day20)

异常处理 异常处理是程序运行过程产生的异常情况进行恰当的处理技术 在计算机编程里面,异常的情况比所我们所想的异常情况还要多。 Java里面有两种异常处理方式; 1.利用trycatchfinaly语句处理异常,优点是分开了处理异常代码和程序正常代码…

Jenkins (三) - 拉取编译

Jenkins (三) - 拉取编译 通过Jenkins平台 git 拉取github上项目,通过maven编译并打包。 Jenkins 安装 git 插件 Manager Jenkins -> Plugins -> Available plugins -> Git 打包编译检验 FressStyle 风格编译 New Item输入 item name Spring-Cloud-1…

【机器学习300问】60、图像分类任务中,训练数据不足会带来什么问题?如何缓解图像数据不足带来的问题?

在机器学习中,绝大部分模型都需要大量的数据进行训练和学习(包括有监督学习和无监督学习),然而在实际应用中经常会遇到训练数据不足的问题。就比如图像分类这样的计算机视觉任务,确实依赖于大规模且多样化的训练数据以…