文献学习-28-Endora: 用于内镜仿真的视频生成模型

Endora : Video Generation Models as  Endoscopy Simulators
Authors: Chenxin Li, Hengyu Liu, Yifan Liu, Brandon Y. Feng, Wuyang Li, Xinyu Liu, Zhen Chen, Jing Shao, Yixuan Yuan
Keywords:  Medical Generative AI · Video Generation · Endoscopy

Abstract

生成模型有望革新医疗教育、机器人辅助手术以及机器学习的数据增强。尽管在生成二维医疗图像方面有了进展,但临床视频生成这个复杂领域很大程度上还未实现突破。本文介绍了Endora,一种创新方法来生成模拟临床内窥镜场景的医学视频。提出了一个新领域的生成模型设计,它将精心设计的空间时间视频Transformer与先进的2D视觉基础模型先验结合起来,明确地在视频生成过程中建模空间时间动态。首次开创了以视频生成模型对内窥镜模拟进行的公开基准测试,并将现有国内外领先方法应用于这一领域。Endora在广泛测试中显示出在生成内窥镜视频中的非凡视觉品质,超过了国内外领先方法。此外,还探索了这个内窥镜模拟器如何支持下游视频分析任务,甚至可以有多视图一致性地生成3D医学场景。总之,Endora在将生成AI技术应用到临床内窥镜研究领域方面标志着一个重要的突破,为医学内容生成领域的继续进步奠定了坚实基础。

肠胃镜检查是研究肠胃疾病诊断、微创手术和机器人外科的前沿领域之一。尽管它在临床中的作用重要,但由于在人体内采集镜头图像本身就很困难,导致肠胃镜研究和训练资源相对短缺。有必要建立一个丰富多样且质量高的临床肠胃镜视频库,这亦提出了医学生成智能的迫切需求。目标是构建一个强大的肠胃镜视频模拟系统,并生成大量高质量的肠胃镜视频资源,以丰富医务工作者的学习资源,并改进外科机器人和 AI 算法的数据训练。这一研究提出以下几个重要问题:

  1. 建立视频基准测试:医学影像和文字数据已有自动生成报告和重构影像等应用作为基准。能否同样将这一成功应用于医疗视频,建立视频模拟质量的评估标准?

  2. 空间时间建模:目前诸如生成对抗网络(GAN)和扩散模型已经很好地生成真实医学 2D 影像,但视频的动态属性和空间时间相关性提出了更大挑战。模型是否能有效模拟真实手术过程的细节?

为解决这些问题,提出一个框架来生成时空连贯且现实可信的肠胃镜视频,模拟临床场景。这超越了传统医学内容生成只针对文本和静态 2D 影像的范围,旨在为医学视频生成定下更全面性的基准。具体来说,设计的 Endora 模型通过预训练的变分自编码器将视频编码到潜变量空间,然后通过变换器块处理特征,同时采用基于 DINO 模型的特征匹配来保证不同视角下的一致性。测试表明 Endora 能生成高真实度的肠胃镜视频,具有很好的效果和潜在应用前景。总体来说,Endora 为医学生成智能在探索复杂高维的外科视频内容生成奠定了基础。

图1。Endora训练概述。扩散模型从噪声输入的视频序列开始,迭代地去除噪声,恢复干净的序列。长期时空动力学是由交错级联的时空变压器块。进一步注入了基于二维视觉基础模型(DINO)来指导特征提取。

Methodology

视频生成的扩散模型
基于去噪扩散概率模型(DDPM)的生成扩散模型专门用于将无序噪声转化为理想样本。这些模型通过逐步从高斯噪声$p(x_T)=N(0,I)$中去除噪声,生成与目标数据分布一致的样本。前向扩散步骤$q(x_t|x_{t-1})$将高斯噪声添加到图像$x_t$中。相应的边际分布可表示为:

$q(x_t|x_0)=N(\sqrt{\alpha_t}x_0,\sigma_t^2I)$

其中$\alpha_t$$\sigma_t$在前向过程结束时设计为收敛到$N(0,I)$。反向扩散过程$p(x_{t-1}|x_t)$被设计为噪声估计器$\epsilon_\theta(x_t,t)$,用于从噪声图像估计噪声。训练过程包括优化加权证据下界(ELBO):

$\mathbb{E}[w(t)||\epsilon_\theta(\sqrt{\alpha_t}x_0+\sigma_t\epsilon;t)-\epsilon||_2^2]$

其中$\epsilon\sim N(0,I)$, 时间步$t$服从均匀采样,而$w(t)=1$是加权函数。

将扩散模型提升到视频会增加计算开销和表示复杂性。潜在扩散模型在编码的潜在空间而非像素空间执行扩散过程,提高了模型效率。另一种策略同时训练视频和图像生成以提高视频生成质量。框架采用了类似策略,但进一步提出了新的创新,详述如下。

时空Transformer
借鉴ViT在捕获空间相关性方面的见解,引入了一个专门从共享相同时间索引的token中提取空间信息的空间转换器。采用patch embedding策略为这个空间转换器指示位置嵌入。

进一步引入了一个时间转换器来捕获视频帧之间的时间信息。使用绝对位置编码策略整合时间位置嵌入,该策略将不同频率的正弦函数相结合。这种策略使得模型能够准确地确定每个帧在视频序列中的确切位置。

特别地,给定一个潜在空间中的视频片段$V\in\mathbb{R}^{F\times H\times W\times C}$,其中$F,H,W,C$分别表示视频帧数、潜在特征图的高度、宽度和通道数。将$V$转换为一序列token$\hat{Z}\in\mathbb{R}^{NF\times N_H\times N_W\times D}$。视频片段潜在空间中总token数为$NF\times N_H\times N_W$,$D$表示每个token的维度。将时空位置嵌入$PE$整合到$\hat{Z}$中,因此$Z=\hat{Z}+PE$作为转换器主干的输入。将$Z$reshape为$Z_S\in\mathbb{R}^{NF\times L\times D}$,作为空间转换器块的输入,用于捕获空间信息。这里$L=N_H\times N_W$表示每个时间索引的token数。然后,包含空间信息的$Z_S$被reshape为$Z_T\in\mathbb{R}^{L\times N_F\times D}$,作为时间转换器块的输入,用于捕获时间信息。通过交替堆叠一系列空间和时间转换器,模型能够全面地建模长程空间相关性和时间动态。

实验

实验设置
数据集和评估指标。在三个公开的内窥镜视频数据集Colonoscopic、Kvasir-Capsule和CholecTriplet上进行了全面的实验。根据常见做法,以特定的采样间隔从这些数据集中提取16帧视频clips,并将每一帧调整到128×128的分辨率用于训练。在定量比较评估中,采用三种评估指标:Fréchet视频距离(FVD)、Fréchet初始距离(FID)和Inception分数(IS)。遵循StyleGAN-V的评估规则,通过分析2048个每个包含16帧的视频clips来计算FVD分数。

实现细节。使用AdamW优化器,学习率为1×10^-4训练所有模型。简单应用了水平翻转的基本数据增强。跟随生成模型的标准做法,使用了指数移动平均(EMA)策略,并报告了EMA模型的最终结果取样性能。直接使用了Stable Diffusion预训练的变分自动编码器。模型由n=28个Transformer块构建,隐藏维度为d=1152,每个块有n=16个多头注意力,遵循ViT结构。

与现有技术的对比
通过在内窥镜视频数据集上复现几种针对一般场景设计的先进视频生成模型,包括StyleGAN-V、MoStGAN-V和LVDM,来进行性能对比。如表1所示,在所有三种指标上,Endora在内窥镜视频生成的视觉保真度方面优于基于GAN的最新方法。此外,Endora还在所有方面超越了先进的基于扩散的LVDM方法,表明Endora能有效地生成内窥镜场景的准确视频表示。图2进一步展示了Endora和之前技术的定性结果。可以观察到,其他技术导致视觉上的违和扭曲(第1行)、内容变化受限(第2和4行)以及帧间过渡不连续(第5行,手术器械的突然闯入)。相比之下,Endora生成的视频帧(第3和6行)避免了视觉违和的扭曲,保留了更多视觉细节,并提供了更优秀的组织表示。

进一步的实证研究
本节阐述了利用Endora生成视频进行几种潜在应用,并对关键策略进行了严格的消融研究。

案例一:Endora作为时间数据扩充器。探索了使用生成视频作为无标签实例进行半监督训练(通过FixMatch)的情况,评估在视频疾病诊断基准PolyDiag上的性能。特别地,使用PolyDiag训练集中随机选择的nl=40个视频作为有标签数据,并分别使用nu=200个从Colonoscopic和CholecTriplet生成的视频作为无标签数据。表2给出了疾病诊断的F1分数,显示了相比仅使用有标签训练实例(Supervised-Only基线)和其他视频生成方法,使用Endora生成的数据能够明显提高下游性能,证实了Endora作为可靠视频数据扩充器用于下游视频分析的有效性。

案例二:Endora作为手术世界模拟器。生成内容中新出现的多视角一致性启发探索生成的手术视频中是否存在类似的几何一致性。特别地,从生成的视频中,取一些帧作为训练数据(训练视角),保留其他帧作为测试数据(新视角)。然后使用COLMAP对训练视角进行预处理,再运行现成的3D重建管线(EndoGaussian)获得重建的3D内窥镜场景。图3给出了在新视角下渲染的RGB图像和深度图的可视化,并标注了图像PSNR和深度全变分(TV)。可以观察到,从生成的视频重建的3D场景展现了逼真连续的几何结构,显示了Endora以多视角一致的方式有效执行手术世界模拟的潜力。

消融研究。表3给出了对Endora提出的关键组件的消融研究。最初,使用一个不带任何提出策略的普通视频扩散模型作为基线。随后,一次添加三种提出的设计策略:修改后的扩散、时空编码和先验引导。可以观察到它们导致了模型性能的稳定进展,确认了设计的策略在提高整体内窥镜视频生成模型的效率和效果方面的关键作用。

Reference

[1] Li, C., Liu, H., Liu, Y., Feng, B. Y., Li, W., Liu, X., ... & Yuan, Y. (2024). Endora: Video Generation Models as Endoscopy Simulators. arXiv preprint arXiv:2403.11050.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/299451.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C++】红黑树讲解及实现

前言: AVL树与红黑树相似,都是一种平衡二叉搜索树,但是AVL树的平衡要求太严格,如果要对AVL树做一些结构修改的操作性能会非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更…

33. UE5 RPG使用增强输入激活GameplayAbility(三)

在前面的文章,我们实现了使用GameplayTag和InputAction的对应绑定的数据,并且添加到了增强输入映射的上下文中,实现了通过按键打印对应的GameplayTag,这只是我们基础需要制作的。目的主要是为了实现在GameplayAblity上面设置对应的…

深入浅出 -- 系统架构之分布式多形态的存储型集群

一、多形态的存储型集群 在上阶段,我们简单聊了下集群的基本知识,以及快速过了一下逻辑处理型集群的内容,下面重点来看看存储型集群,毕竟这块才是重头戏,集群的形态在其中有着多种多样的变化。 逻辑处理型的应用&…

【.Net】DotNetty

文章目录 概述NIO和BIO、AIODotNetty适用场景DotNetty的整体架构和模块DotNetty的使用示例来源 概述 本系列文章主要讲述由微软Azure团队研发的.net的版本的netty,Dotnetty。所有的开发都将基于.net core 3.1版本进行开发。 Dotnetty是什么,原本Netty是…

蓝桥真题--路径之谜DFS解法

路径之谜 思路 前置知识:深度搜索模板搜索所有可以找的路径,将走过的靶子减去一走到最后一个格子的时候,直接去判断所有的靶子只有除最后一个位置的靶子,其余靶子都归零的时候,判断一个最后一个位置横坐标和纵坐标的靶…

PTA C 1050 螺旋矩阵(思路与优化)

本题要求将给定的 N 个正整数按非递增的顺序,填入“螺旋矩阵”。所谓“螺旋矩阵”,是指从左上角第 1 个格子开始,按顺时针螺旋方向填充。要求矩阵的规模为 m 行 n 列,满足条件:mn 等于 N;m≥n;且…

Bayes-RF,基于贝叶斯Bayes优化算法优化随机森林RF分类预测(二分类及多分类皆可)-附代码

Bayesian Optimization(贝叶斯优化)是一种用于超参数调优的技术,对于类似随机森林(Random Forest,简称RF)的机器学习算法非常重要。随机森林是一种集成学习方法,它在训练过程中构建多个决策树&a…

漂亮国的无人餐厅的机器人骚操作

导语 大家好,我是智能仓储物流技术研习社的社长,你的老朋友,老K。行业群 新书《智能物流系统构成与技术实践》 知名企业 读者福利: 👉抄底-仓储机器人-即买即用-免调试 智能制造-话题精读 1、西门子、ABB、汇川&#x…

详解 Redis 在 Centos 系统上的安装

文章目录 详解 Redis 在 Centos 系统上的安装1. 使用 yum 安装 Redis 52. 创建符号链接3. 修改配置文件4. 启动和停止 Redis 详解 Redis 在 Centos 系统上的安装 1. 使用 yum 安装 Redis 5 如果是Centos8,yum 仓库中默认的 redis 版本就是5,直接 yum i…

Premiere Pro 2024:赋予创意翅膀,让你的视频飞翔 mac/win版

Premiere Pro 2024,作为Adobe旗下的旗舰视频编辑软件,自推出以来,一直在视频制作领域占据着重要的地位。随着技术的不断进步和创新,Premiere Pro 2024为用户带来了前所未有的编辑体验,重新定义了视频制作的标准。 Pre…

Unity类银河恶魔城学习记录12-3 p125 Limit Inventory Slots源代码

Alex教程每一P的教程原代码加上我自己的理解初步理解写的注释,可供学习Alex教程的人参考 此代码仅为较上一P有所改变的代码 【Unity教程】从0编程制作类银河恶魔城游戏_哔哩哔哩_bilibili Inventory.cs using Newtonsoft.Json.Linq; using System.Collections; us…

深入go泛型特性之comparable「附案例」

写作背景 如果你经常遇到一些操作,比如将 map 转换为 slice,判断一个字符串是否出现在 map 中,slice 中是否有重复元素等等,那你对下面这个库肯定不陌生。 github.com/samber/lo最近抽业余时间在看了源码,底层用了范…

云计算的安全需求

目录 一、概述 二、云安全服务基本能力要求 三、信息安全服务(云计算安全类)资质要求 3.1 概述 3.2 资质要求内容 3.2.1 组织与管理要求 3.2.2 技术能力要求 四、云安全主要合规要求 4.1 安全管理机构部门的建立 4.2 安全管理规范计划的编制 4…

【Flutter】Getx设计模式及Provider、Repository、Controller、View等

本文基于Getx 4,x 本本 1、引入 再次接触到Flutter项目,社区俨然很完善和活跃。pubs.dev 寻找状态管理的时候看到很熟悉的Getx时间,俨然发现Getx的版本已到是4.x版本,看到Getx的功能已经非常强大了,庞大的API俨然成为一种开发框架…

Windows Server 2008添加Web服务器(IIS)、WebDAV服务、网络负载均衡

一、Windows Server 2008添加Web服务器(IIS) (1)添加角色,搭建web服务器(IIS) (2)添加网站,关闭默认网页,添加默认文档 在客户端浏览器输入服务器…

蓝桥杯 十一届C++A组 字符排序 21分(运行超时)

思路: 1. 此题考查的冒泡排序中的交换次数,其实就是考察当前数与后面的逆序对个数问题。而为了最大利用位数,应当使每一位都不小于后面的字符,否则会造成一次逆序对的浪费(贪心,为了使总位数最少&#xff…

每日OJ题_优先级队列_堆③_力扣692. 前K个高频单词

目录 力扣692. 前K个高频单词 解析代码 力扣692. 前K个高频单词 692. 前K个高频单词 难度 中等 给定一个单词列表 words 和一个整数 k ,返回前 k 个出现次数最多的单词。 返回的答案应该按单词出现频率由高到低排序。如果不同的单词有相同出现频率&#xff0c…

《QT实用小工具·三》偏3D风格的异型窗体

1、概述 源码放在文章末尾 可以在窗体中点击鼠标左键进行图片切换,项目提供了一些图片素材,整体风格偏向于3D类型,也可以根据需求自己放置不同的图片。 下面是demo演示: 项目部分代码如下所示: 头文件部分&#xff…

基于SSM+Vue的服装商城系统

绪论 项目研究的背景 困扰管理层的许多问题当中,服装定制将是广大用户们不可忽视的一块。但是管理好服装定制又面临很多麻烦需要解决,例如,如何在工作琐碎,记录繁多的情况下将服装定制的当前情况反应给相关管理人员决策,等等。在此情况下开发一款服装定制系统,于是…

DataLoader的使用

DataLoader的使用 测试DataLoader,batch_size大小为4 import torchvision.datasets from torch.utils.data import DataLoadertest_data torchvision.datasets.CIFAR10("./dataset", trainFalse, transformtorchvision.transforms.ToTensor()) test_loa…