深度学习中的卷积和反卷积(四)——卷积和反卷积的梯度

本系列已完结,全部文章地址为:

深度学习中的卷积和反卷积(一)——卷积的介绍

深度学习中的卷积和反卷积(二)——反卷积的介绍

深度学习中的卷积和反卷积(三)——卷积和反卷积的计算

深度学习中的卷积和反卷积(四)——卷积和反卷积的梯度

1 卷积的梯度计算

1.1 Tensorflow中矩阵梯度运算的说明

请注意,计算y对x的梯度时,如果y、x都是矩阵,梯度理应是每一个y对每一个x求偏导的结果。但在Tensorflow中,gradient是返回了总和的梯度。如果想求出每个分量的梯度,应该使用Jacobian矩阵。这一点困扰了笔者很久,直到翻到文档才恍然大悟。文档地址:梯度和自动微分简介  |  TensorFlow Core

import tensorflow as tfx = tf.Variable(2.0)
# 求gradient,结果为7
with tf.GradientTape() as tape:y = x * [3., 4.]
print(tape.gradient(y, x).numpy())
# 求gradient,结果为[3. 4.]
with tf.GradientTape() as tape:y = x * [3., 4.]
print(tape.jacobian(y, x).numpy())

1.2 卷积对input的梯度

沿用上一篇的例子如下图:

数值例子为:

 输入是3*3的维度,因此梯度维度也是3*3,表示对每一个a中的元素求梯度的结果

观察卷积输出的结果,例如a_{11}​,参与了y_{11}​的计算,系数是k_{11}​,因此梯度为k_{11}​。同理,所有的y对所有的输入都可以计算梯度。以y_{11}​为例:

\frac{\partial {y_{11}}}{\partial {a_{11}}}=k_{11}=1\frac{\partial {y_{11}}}{\partial {a_{12}}}=k_{12}=2\frac{\partial {y_{11}}}{\partial {a_{13}}}=0
\frac{\partial {y_{11}}}{\partial {a_{21}}}=k_{21}=3\frac{\partial {y_{11}}}{\partial {a_{22}}}=k_{22}=4\frac{\partial {y_{11}}}{\partial {a_{23}}}=0
\frac{\partial {y_{11}}}{\partial {a_{31}}}=0\frac{\partial {y_{11}}}{\partial {a_{32}}}=0\frac{\partial {y_{11}}}{\partial {a_{33}}}=0

在Tensorflow中验证如下

@tf.function
def compute_gradient(x, filters):with tf.GradientTape() as tape:tape.watch(x)  # 监视xy = tf.nn.conv2d(x, filters, [1, 1, 1, 1], "VALID")return tape.jacobian(y, x)  # 计算y相对于x的梯度print(compute_gradient(x, filters).numpy().reshape([4, 3, 3]))

输出如下,y_{11}​的输出结果与上文中表格一致,其余y分量不再赘述。

[[[1. 2. 0.][3. 4. 0.][0. 0. 0.]][[0. 1. 2.][0. 3. 4.][0. 0. 0.]][[0. 0. 0.][1. 2. 0.][3. 4. 0.]][[0. 0. 0.][0. 1. 2.][0. 3. 4.]]]

1.3 卷积对kernel的梯度

 对卷积核计算的梯度,就是每一个y对每一个k求梯度,例如每一个y对于k_{11}​的梯度,就是下图红框中的部分,分别是1、2、4、5。

还是以y_{11}​为例,在Tensorflow中验证如下

@tf.function
def compute_kernel_gradient(x, filters):with tf.GradientTape() as tape:tape.watch(filters)  # 监视xy = tf.nn.conv2d(x, filters, [1, 1, 1, 1], "VALID")return tape.jacobian(y, filters)print(compute_kernel_gradient(x, filters).numpy().reshape([4, 2, 2]))

输出如下,符合预期。

[[[1. 2.][4. 5.]][[2. 3.][5. 6.]][[4. 5.][7. 8.]][[5. 6.][8. 9.]]]

2 反卷积的梯度计算

由于反卷积的计算相当于对矩阵先做填充再做卷积,因此反卷积的梯度等价于对填充后的输入矩阵做卷积的梯度。

2.1 反卷积对input的梯度

以前文的数据为例,首先对输入矩阵填充0,然后翻转卷积核,得到4*4的输出。

我们计算每一个输出对每一个输入的梯度,输出是4*4,输入是3*3,因此算梯度的Jacobian矩阵维度是4*4*3*3。

我们以y_{32}a_{22}的梯度为例,先看y_{32}是怎么算出来的

y_{32}=a_{21}*k_{22}+a_{22}*k_{21}+a_{31}*k_{12}+a_{32}*k_{11}

因此y_{32}a_{22}的梯度为k_{21}=3

Tensorflow中验证如下:

import numpy as np
import tensorflow as tfdef conv2d_transpose(x, filters):return tf.nn.conv2d_transpose(x, filters, [1, 4, 4, 1], strides=1, padding="VALID")@tf.function
def compute_conv2d_transpose_i_gradient(x, filters):with tf.GradientTape() as tape:tape.watch(x)y = conv2d_transpose(x, filters)return tape.jacobian(y, x)x = tf.constant(np.arange(1, 10).reshape([1, 3, 3, 1]), dtype=tf.float32)
filters = tf.constant(np.arange(1, 5).reshape(2, 2, 1, 1), dtype=tf.float32)
print(compute_conv2d_transpose_i_gradient(x, filters).numpy().reshape([4, 4, 3, 3])[2][1][1][1])  # 注意下标是从0开始的,[2][1]代表y32,[1][1]代表a22

输出为3,与手算结果一致。

3.0

2.2 反卷积对kernel的梯度

与反卷积对input梯度类似,也等价于对填充后的输入矩阵做卷积时计算梯度。同样用数值例子验证。

计算 y_{32}k_{21}的梯度,结合上节的表达式,得到梯度为a_{22}=5

Tensorflow中验证如下:

import numpy as np
import tensorflow as tfdef conv2d_transpose(x, filters):return tf.nn.conv2d_transpose(x, filters, [1, 4, 4, 1], strides=1, padding="VALID")@tf.function
def compute_conv2d_transpose_k_gradient(x, filters):with tf.GradientTape() as tape:tape.watch(filters)y = conv2d_transpose(x, filters)return tape.jacobian(y, filters)x = tf.constant(np.arange(1, 10).reshape([1, 3, 3, 1]), dtype=tf.float32)
filters = tf.constant(np.arange(1, 5).reshape(2, 2, 1, 1), dtype=tf.float32)
print(compute_conv2d_transpose_k_gradient(x, filters).numpy().reshape([4, 4, 2, 2])[2][1][1][0])

输出为5,与手算结果一致。

5.0

3 反卷积等价于误差反向传播

https://zhuanlan.zhihu.com/p/338780702

下图是Tensorflow中反卷积函数的源码,可以看出反卷积等价于将input作为卷积下层误差反向传播,本节进行推导。

@tf_export("nn.conv2d_transpose", v1=[])
@dispatch.add_dispatch_support
def conv2d_transpose_v2(input,  # pylint: disable=redefined-builtinfilters,  # pylint: disable=redefined-builtinoutput_shape,strides,padding="SAME",data_format="NHWC",dilations=None,name=None):......return gen_nn_ops.conv2d_backprop_input(input_sizes=output_shape,filter=filters,out_backprop=input,strides=strides,padding=padding,explicit_paddings=explicit_paddings,data_format=data_format,dilations=dilations,name=name)

3.1 全连接网络的误差反向传播

卷积可视作特殊的全连接网络。全连接网络中每一个输出与每一个输入都使用权重边相连,输出是各输入的加权求和。对于卷积而言,输出只与某些输入有关,但可以理解为所有输出与所有输入相连,只是其中有些权重边固定为0而已。因此,本节先回顾全连接网络的误差反向传播过程,随后推广到卷积的误差反向传播。

如下图所示,我们构造了一个全连接神经网络,忽略偏置。

符号表示如下:

符号含义
A_{i}^{L}L层第i个输入。A指activation,表示L-1层激活后传递给L层的输入
W_{ij}^{L}L层第i个输入连接到第j个输出的权重
Z_{i}^{L}L层第i个输出
B^LL层偏置
L损失函数
\delta_{i}^L最终的误差对于L层第i个输出的梯度,表示反向传播过来的误差

对于L层来说,误差反向传播需要做两件事情:(1)计算误差对本层权重的梯度,从而更新权重;(2)将误差反向传播到上一层,从而更新上层的权重。

3.1.1 误差对本层权重的梯度

根据链式法则,有:

\partial {L}/\partial {W_{ij}^{L}}=\partial {L}/\partial {Z_{j}^{L}}*\partial {Z_{j}^{L}}/\partial {W_{ij}^{L}}

根据\delta_{j}^{L}的定义,前一项即为\delta_{j}^{L}。后一项比较简单,因为Z是由W加权求和而来,因此该项等于A_j^L。在卷积中,卷积核其实就是特殊的权重,因此该项即对应前文讨论的卷积对kernel的梯度。

\delta_{j}^{L}表示误差传播到Z_j^L这个节点的误差,表示节点对于最后误差负的责任,注意这里的Z_j^L是激活之前的输出。\delta_{j}^{L}可以继续分解为最终误差对激活后的结果A的梯度乘A对于Z的梯度,如果是最后一层,则代表损失函数的梯度。后者代表激活函数的梯度。

求出梯度后,根据神经网络的学习规则,权重根据学习率、梯度动态更新。

3.1.2 误差反向传播到上一层

本层需要求出\delta^{L-1},从而使得下一层根据此结果更新权重。以L-1层第j个输出为例

\delta_{j}^{L-1}=\partial {L}/\partial {Z_{j}^{L-1}}=\partial {L}/\partial {A_{j}^{L}}*\partial {A_{j}^{L}}/\partial {Z_{j}^{L-1}}

注意乘号后一项就是激活函数的导数,下面分析乘号前一项。注意L层的Aj会参与到多个输出Z,因此需要将所有输出Zi都考虑在内。

\partial {L}/\partial {A_{j}^{L}}=\sum_i {\partial {L}/\partial {Z_i^L} * \partial {Z_i^L}/\partial {A_{j}^{L}}}=\sum_i {\delta_i^L * \partial {Z_i^L}/\partial {A_{j}^{L}}}

此式后一项即为卷积中对input的梯度。可进一步化简,结果为\partial {L}/\partial {A_{j}^{L}}=\sum_i {\delta_i^L * W_{ji}},因此损失函数对L层输入的梯度可表示为\delta与权重相乘后求和。

3.2 卷积的误差反向传播

误差反向传播,对应前文中“误差反向传播到上一层”这一小节。在卷积中,卷积核其实就是特殊的稀疏权重,其中有很多权重为0。

还是以前文卷积计算为例,我们列出损失函数对所有输入的梯度。代入上式,得到:

注意这里符号表示有所调整,因为全连接网络是把输入和输出展开的,卷积这里输入和输出是二维的,因此下标用二维坐标表示。同时此处只讨论第L层网络情况,不再保留上标。

\partial {L}/\partial{a_{11}}=\delta_{11}*k_{11}

\partial {L}/\partial{a_{12}}=\delta_{11}*k_{12}+\delta_{12}*k_{11}

\partial {L}/\partial{a_{13}}=\delta_{11}*k_{12}+\delta_{12}*k_{12}

\partial {L}/\partial{a_{21}}=\delta_{11}*k_{21}+\delta_{21}*k_{11}

\partial {L}/\partial{a_{22}}=\delta_{11}*k_{22}+\delta_{12}*k_{21}+\delta_{21}*k_{12}+\delta_{22}*k_{11}

\partial {L}/\partial{a_{23}}=\delta_{12}*k_{22}+\delta_{22}*k_{12}

\partial {L}/\partial{a_{31}}=\delta_{21}*k_{21}

\partial {L}/\partial{a_{32}}=\delta_{21}*k_{22}+\delta_{22}*k_{21}

\partial {L}/\partial{a_{33}}=\delta_{22}*k_{22}

可以看到由于a22参与了所有的输出,所以表达式有4项,其他输入只参与了1或2项输出,相当于对剩余输出的权重为0,因此表达式只有1、2项。

这种计算结果等价于对下式求卷积:

可以发现,这正好是反卷积的计算过程。

3.3 Tensorflow的验证

在Tensorflow中验证如下:

def conv2d_transpose(x, filters):return tf.nn.conv2d_transpose(x, filters, [1, 4, 4, 1], strides=1, padding="VALID")x = tf.constant(np.arange(1, 10).reshape([1, 3, 3, 1]), dtype=tf.float32)
filters = tf.constant(np.arange(1, 5).reshape(2, 2, 1, 1), dtype=tf.float32)
print("反卷积结果:")
print(conv2d_transpose(x, filters).numpy().reshape([4, 4]))
# 卷积反向传播
x = tf.constant(np.array([[0, 0, 0, 0, 0],[0, 1, 2, 3, 0],[0, 4, 5, 6, 0],[0, 7, 8, 9, 0],[0, 0, 0, 0, 0]]).reshape([1, 5, 5, 1]), dtype=tf.float32)
filters = tf.constant(np.array([[4, 3],[2, 1]]).reshape(2, 2, 1, 1), dtype=tf.float32)
print("卷积反向传播结果:")
print(tf.nn.conv2d(x, filters, [1, 1, 1, 1], "VALID").numpy().reshape(4, 4))

输出如下图所示,二者一致。

反卷积结果:
[[ 1.  4.  7.  6.][ 7. 23. 33. 24.][19. 53. 63. 42.][21. 52. 59. 36.]]
卷积反向传播结果:
[[ 1.  4.  7.  6.][ 7. 23. 33. 24.][19. 53. 63. 42.][21. 52. 59. 36.]]

参考资料

《卷积神经网络(CNN)反向传播算法详细解析》

《反向传播算法中的权重更新是如何进行的?》

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/2996.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Mongodb相关内容

Mongodb相关内容 1、Windows平台安装2、Linux平台安装3、基本常用命令文档更新删除文档分页查询索引 pymongo操作 客户端下载:https://download.csdn.net/download/guoqingru0311/90273435 1、Windows平台安装 方式一: 方式2: 方式3&#…

RabbitMQ前置概念

文章目录 1.AMQP协议是什么?2.rabbitmq端口介绍3.消息队列的作用和使用场景4.rabbitmq工作原理5.整体架构核心概念6.使用7.消费者消息推送限制(work模型)8.fanout交换机9.Direct交换机10.Topic交换机(推荐)11.声明队列…

[Mac + Icarus Verilog + gtkwave] Mac运行Verilog及查看波形图

目录 1. MAC安装环境 1. 1 Icarus Verilog 编译 1. 2 gtkwave 查看波形 2. 安装遇到的问题 2. 1 macOS cannot verify that this app is free from malware 2. 2 gtkwave-bin is not compatible with macOS 14 or later 3. 运行示例 3. 1 源代码 3. 2 编译Verilog 3. 3 生成.v…

kalilinux - 目录扫描之dirsearch

情景导入 先简单介绍一下dirsearch有啥用。 假如你现在访问一个网站,例如https://www.example.com/ 它是一个电商平台或者其他功能性质的平台。 站在开发者的角度上思考,我们只指导https://www.example.com/ 但不知道它下面有什么文件,文…

如何制作符合自己设备的FLM下载算法

如何制作符合自己设备的FLM下载算法 --------以I.MXRT1062 QSPI FLAH为例(串行qspi nor flash) 本文介绍一种基于i.mxrt1062的外挂flah的qspi nor flash下载算法FLM的一种方法,Flash 编程算法是一种用于擦除或下载应用程序到 Flash 设备的软…

LLMs之RAG:《EdgeRAG: Online-Indexed RAG for Edge Devices》翻译与解读

LLMs之RAG:《EdgeRAG: Online-Indexed RAG for Edge Devices》翻译与解读 导读:这篇论文针对在资源受限的边缘设备上部署检索增强生成 (RAG) 系统的挑战,提出了一种名为 EdgeRAG 的高效方法。EdgeRAG 通过巧妙地结合预计算、在线生成和缓存策…

基于Java的百度AOI数据解析与转换的实现方法

目录 前言 一、AOI数据结构简介 1、官网的实例接口 2、响应参数介绍 二、Java对AOI数据的解析 1、数据解析流程图 2、数据解析实现 3、AOI数据解析成果 三、总结 前言 在当今信息化社会,地理信息数据在城市规划、交通管理、商业选址等领域扮演着越来越重要的…

【C++】构造函数与析构函数

写在前面 构造函数与析构函数都是属于类的默认成员函数! 默认成员函数是程序猿不显示声明定义,编译器会中生成。 构造函数和析构函数的知识需要建立在有初步类与对象的基础之上的,关于类与对象不才在前面笔记中有详细的介绍:点我…

2013年IMO几何预选题第4题

在 △ A B C \triangle ABC △ABC 中, A B < A C AB < AC AB<AC. P P P, Q Q Q 是直线 A C AC AC 上的两个不同的点, 满足 ∠ P B A ∠ Q B A ∠ A C B \angle PBA \angle QBA \angle ACB ∠PBA∠QBA∠ACB, 且 A A A 在 P P P 与 C C C 之间. 已知在线段…

UDP报文格式

UDP是传输层的一个重要协议&#xff0c;他的特性有面向数据报、无连接、不可靠传输、全双工。 下面是UDP报文格式&#xff1a; 1&#xff0c;报头 UDP的报头长度位8个字节&#xff0c;包含源端口、目的端口、长度和校验和&#xff0c;其中每个属性均为两个字节。报头格式为二…

网络科技有限公司网络设计

网络科技有限公司网络设计 摘要&#xff1a;伴随着信息科技发展&#xff0c;上网变得一件必不可少的事情&#xff0c;当然网络安全对我们也是越来越重要。像我们的传统网结构是无法为我们的上网提供一个安全的网络环境。锐雯网络科技有限公司就是以网络安全为基本的对网络惊醒…

【c++】哈希

&#x1f525;个人主页&#xff1a;Quitecoder &#x1f525;专栏&#xff1a;c笔记仓 目录 1. unordered系列关联式容器1.1 unordered_map1.2 接口函数 例题 2.哈希概念2.1哈希冲突2.2哈希函数2.3哈希冲突解决2.3.1线性探测二次探测 2.3.2开散列 3. 封装迭代器封装完整代码&a…

@Query(org.springframework.data.jpa.repository.Query)

文章目录 1. findPAProductByAdminId 方法作用&#xff1a;解释&#xff1a; 2. findPaginatedPAProductByAdminId 方法作用&#xff1a;解释&#xff1a; 总结&#xff1a; package com.productQualification.resource.repository.productAuthentication;import com.productQu…

[Collection与数据结构] PriorityQueue与堆

1. 优先级队列 1.1 概念 前面介绍过队列&#xff0c;队列是一种先进先出(FIFO)的数据结构&#xff0c;但有些情况下&#xff0c;操作的数据可能带有优先级&#xff0c;一般出队列时&#xff0c;可能需要优先级高的元素先出队列&#xff0c;该中场景下&#xff0c;使用队列显然…

STM32网络通讯之CubeMX实现LWIP项目设计(十五)

STM32F407 系列文章 - ETH-LWIP-CubeMX&#xff08;十五&#xff09; 目录 前言 一、软件设计 二、CubeMX实现 1.配置前准备 2.CubeMX配置 1.ETH模块配置 2.时钟模块配置 3.中断模块配置 4.RCC及SYS配置 5.LWIP模块配置 3.生成代码 1.main文件 2.用户层源文件 3.…

【React】静态组件动态组件

目录 静态组件动态组件创建一个构造函数(类)使用 class 实现组件**使用 function 实现类组件** 静态组件 函数组件是静态组件&#xff1a; 组件第一次渲染完毕后&#xff0c;无法基于内部的某些操作让组件更新「无法实现自更新」&#xff1b;但是&#xff0c;如果调用它的父组…

我的世界-与门、或门、非门等基本门电路实现

一、红石比较器 (1) 红石比较器结构 红石比较器有前端单火把、后端双火把以及两个侧端 其中后端和侧端是输入信号,前端是输出信号 (2) 红石比较器的两种模式 比较模式 前端火把未点亮时处于比较模式 侧端>后端 → 0 当任一侧端强度大于后端强度时,输出…

持续集成 01|Gitee介绍、Pycharm使用Gitee

目录 一、理论 二、 git的简介与安装 三、Gitee 1、注册网易163邮箱 2、注册Gitee账号 3、git和gitee管理代码工作原理 三、PyCharm安装配置Gitee 四、Pycharm使用Gitee插件的五种场景 1、将 Gitee的新仓库 Checkout&#xff08;检出&#xff09;到 Pycharm中 2、推送…

【Qt】03-页面切换

前言一、按键实现界面切换1.1 创建新的类文件1.1.1 创建1.1.2 细节选择 1.2 代码以及需要注意的点mywidget.cppsecondwidget.cppmywidget.hsecondwidget.h 1.3 结果展示 二、signal关键字2.1 代码以及解释mywidget.cppsecondwidget.cppmywidget.hsecondwidget.h解释 2.2 现象 三…

软件授权管理中的软件激活向导示例

软件激活向导示例 在软件许可中&#xff0c;提供许可应该是简单和安全的。这适用于想要在中央许可证服务器上创建新许可证的软件开发人员&#xff0c;也适用于需要在其设备上获得许可证的最终用户。如果所讨论的系统有互联网连接&#xff0c;或是暂时的连接&#xff0c;就可以…