你真的会跟 ChatGPT 聊天吗?(下)

接《你真的会跟 ChatGPT 聊天吗?(上)》,本文下半部分没有无毛猫那么搞笑的内容啦!即使如此,哪怕你对文中提及的技术不大了解,也可以毫无压力地看完这篇,描述如何更好地获得 ChatGPT 生成内容的文章。因为我也是利用 Azure OpenAI 等认知服务来学习,然后就这样写出来的。所以,舒服地坐下来,慢慢看吧~

微软MVP实验室研究员

胡浩

多年从事基础架构相关工作,熟悉全栈虚拟化、终端用户和边缘计算等,对多个技术方向有所涉猎。乐于学习并分享 Azure 和 AI,曾在很多大型研讨会演讲,如微软的 TechEd、MEDC、Tech Summit、Ignite,威睿的 VMworld、vForum、ENPOWER,以及苹果、戴尔等技术会议。同时也是很多社区大会如 Global AI Bootcamp、Global Azure Bootcamp、Global M365 Bootcamp 等活动的组织者和演讲者。

玩角色扮演

GPT 使用了如此庞大的语料库数据集,以至于任何人类个体基本上都无法望其项背。那么问题也就来了——对于人来说,同一个问题,不同角色不同场景的理解和回答会大相径庭。那我们如何期待 GPT 能够以更准确的方式回答我们的问题呢?

答案是,为 AI 分配角色。我们也可以将之视为角色扮演(Cosplay)。这样 GPT 会以你定义的角色,更加合适地回答你的问题。

我们先向 GPT 模型提一个问题:“如果我面试人工智能专家,你会提出什么样的问题?” 

可以看到,GPT 回答得还蛮不错,但是不太像人工智能公司的 HR 提的问题,感觉没那么专业。

以下是一个例子:“你是一个人事的专家,已经从事招聘工作超过10年,帮助企业面试候选人。你的任务是提出常见的问题来确认候选人是否满足要求,并且愿意入职。如果你理解你的角色,请回复‘知道了’。”

这一轮提问感觉就更专业、更注重实际 AI 工作经验了。

实际上 GPT-3.5 和 GPT-4 模型已经使用新的 ChatCompletion 接口取代之前模型使用的 Completion 接口,它们的差别在第一小节的截图中其实已经展示了。ChatCompletion 在会话开始的时候,会使用一个系统消息来配置模型的角色:

{"role": "system", "content": "You are a helpful assistant."}

在这条消息里,我们就可以用文本来设置对话模型的角色扮演,让后续的对话更加准确合适。

以下是一个例子:为了把神经语音接入到 GPT,我需要生成的代码支持 SSML。于是我们甚至可以在这里提出对回复文本的格式要求。

{"role":"system","content":"You are a Chinese poet and must use Speech Synthesis Markup Language to answer questions to help people find the beauty of language."}

正如你看到的,我在系统角色中要求回答问题必须使用 SSML。于是,GPT-4 模型给了我如下的答复:

我其实已经可以直接把回复的文本提供给 Azure Speech 认知服务 [1]来生成语音(TTS,Text To Speech),让基于神经语音的人工智能声音抑扬顿挫了。

个性化生成

 

实际上,我们前一节的内容已经涉及到一点个性化了,其实我们完全可以通过个性化的设定和要求获得完全不同的人工智能生成内容。

以下是一个例子:我们使用小学生的语气,生成一段话,说明人工智能为什么不会取代人类。

可以发现,这位 GPT-3“小学生”看过一些人工智能的书,回答的很准确,知道目前人工智能还不具备创造力和情感。但更多的知识可能就有限了。我们换一个方式。

以下是一个例子:我们冒充非常有经验的人工智能专家,以比较诙谐的例子回答这个问题。

这次生成的内容,就和前面的内容有些不同。GPT-3 通过一个便于理解的例子,说明了创造性是目前人工智能所无法实现的。

我们不能指望一次就从 GPT 获得期望的回答,按照我们的期望去调整提问,不断尝试。个性化的回答会更“不像”人工智能生成的,甚至更容易通过检测 ChatGPT 生成内容的测试。

一步一步来

 

▍思考链

大语言模型(LLM)在回答一些比如计算类的逻辑问题时,经常会出现啼笑皆非的结果。这时候使用思考链(CoT,Chain of Thought)来帮助 LLM 解释其推理过程会有帮助。

简单来说,思考链就是引导模型把一个问题的描述拆分为一系列更能说明逻辑的问题,以此加强模型处理更复杂的算术、常识和符号推理能力。

以下的例子来自于论文 Chain-of-Thought Prompting Elicits Reasoning in Large Language Models [2]。

在这篇论文中,作者使用了 GSM8K 的数据集。这个数据集包含了一些根据两三句话写算式算答案的样例——这不就是小学应用题嘛,但 GPT-3 在此数据集上回答问题的准确率非常感人。

和人一样,如果将一个“复杂”问题或者没有“完全”描述的问题,诱导产生中间推理步骤,就能够有效提高对问题的理解。

仅仅通过将 CoT 指令“让我们一步一步考虑”添加到 MultiArith 数据集的每个输入查询中,GPT-3 的准确性就从17.7%提高到了78.7%[3]。由此可见,当人工智能还不那么“智能”的时候,使用思考链将一个问题分解为逻辑联系的多个问题将会帮我们获得更准确的回复。

GPT-4 的训练提高了模型的高级推理能力,简单地说,考试成绩就好多了!所以 CoT 的帮助可能不是那么明显,但仍然值得试试。

 

▍自洽 CoT

在 CoT 的基础上,其实还有继续提升的做法,比如,在前文说的思考链做法上,生成多个思考链(推理路径),然后对答案进行多数投票,票高者称为答案。

这个做法本身是无监督的,它从语言模型的译码器来生成一组不同的推理路径;每个推理路径可能导致不同的最终答案,所以我们通过边缘化采样推理路径,在最后的答案集中,找到最一致的答案来确定最优答案。这种方法类似于人类经验:如果多个不同的思维方式导致同样的答案,会给我们更大的信心——最终的答案估计是正确的。

这个操作可以显著提高思考链的性能。以结合到 GPT-3 模型为例,在前文谈到的 GSM8K 数据集上获得了+17.9%绝对精度增长[4]。

 

▍问题分解

在介绍从少到多(L2M,Least-to-Most)方法之前,我们花一点时间看看 OpenAI 的一个里程碑研究成果——用人类反馈总结书籍[5]。这篇文章其实是为了机器学习模型对齐人类意图,但举的例子很有意思:对一本书进行总结的模型。

我的理解是分为几层过程,先对书的小节进行总结,然后对这些总结的结果再做一层总结,依次类推几次,就实现了对书籍甚至电影等作品的内容总结。

我们把这个方法反过来用,不就正好可以拿来解决复杂推理问题吗?

首先将复杂的推理问题拆分为一系列相关的子问题(问题简化),然后按顺序解决这些子问题(问题解决)。提示在解决子问题时包含三个部分:

 (1) 演示如何解决子问题的常量示例;

 (2) 可能为空的、已回答先前子问题和生成的解决方案列表;

 (3) 下一个要回答的问题。

传递给模型的提示,包含演示如何减少复杂问题的示例,后跟要减少的特定问题。换个角度想想,每个子问题的解决都将推动解决下一个问题,就像我们小时候老师教我们的一样:解答题目的每个子问题都能得分,并提高我们解答最终题目的信心,最后解答出整个题目。

 

▍生成知识提示

生成知识提示(Generated Knowledge Prompting)涉及两个步骤:

 (1) 使用少样本学习,演示从语言模型生成与问题相关的知识陈述;

 (2) 使用第二语言模型对每个知识陈述进行预测,然后选择置信度最高的预测。

其核心思想是从语言模型中生成有用的知识,然后将这些知识作为输入提示与问题一起提供。这种方法不需要任务特定的监督来进行知识集成,也不需要访问结构化的知识库。其性能受到三个因素的影响:知识质量、知识数量和推理过程中集成知识的策略。

生成知识提示可以提高大规模、最先进的模型在四个常识推理任务上的性能,包括 NumerSense、CSQA(CommonsenseQA)、CSQA 2.0 和 QASC 基准测试。突出了大规模语言模型作为改进常识推理的外部知识的灵活来源,使得模型回复问题不再显得那么缺乏常识。

关于如何跟 ChatGPT 聊天我们就先聊到这里啦!回忆一下,虽然我们参考了很多比较前沿的论文和文章,但大道至简,其中的道理却很容易为人理解。那么,就让我们用更好的提问方式,释放 GPT 模型的能力吧!

参考链接:

[1] ERIC-URBAN. 语音服务文档 - 教程和 API 参考 - Azure 认知服务 - Azure Cognitive Services[EB/OL]. [2023-04-11]. https://learn.microsoft.com/zh-cn/azure/cognitive-services/speech-service/?WT.mc_id=AI-MVP-33253.

[2] WEI J, WANG X, SCHUURMANS D, 等. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models[M/OL]. arXiv, 2023[2023-04-09]. http://arxiv.org/abs/2201.11903.

[3] CHEN J, CHEN L, HUANG H, 等. When do you need Chain-of-Thought Prompting for ChatGPT?[M/OL]. arXiv, 2023[2023-04-10]. http://arxiv.org/abs/2304.03262.

[4] WANG X, WEI J, SCHUURMANS D, 等. Self-Consistency Improves Chain of Thought Reasoning in Language Models[M/OL]. arXiv, 2023[2023-04-09]. http://arxiv.org/abs/2203.11171.

[5] Summarizing books with human feedback[EB/OL]. [2023-04-11]. https://openai.com/research/summarizing-books.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/2990.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

与ChatGPT的一次聊天

一名AI的惨痛经历 本期是#NFT杂志的N4期,概述: ChatGPT是由OpenAI开发的一个大型语言模型。TA可以回答人们提出的问题,尽力提供准确和有用的信息。例如,如果您问TA”什么是人工智能?”,TA会回答&#xff1a…

ChatGPT真的在和我们“聊天”吗?

原创:辛束同学(公众号:一只辛束) ChatGPT吸引了全世界的注意力,包括我。 近期向ChatGPT抛出了各类奇怪的问题,着实为它所产出的规范且标准的文本所折服,同时这个工具的使用又极其简单&#xff0…

ChatGpt 能成为恋爱大师吗?

虽然以 ChatGPT 为代表的人工智能,在很多方面都能够表现出令人惊讶的能力,但是要成为真正的恋爱大师仍然存在许多困难。 人工智能难以理解人类的情感和文化差异 一方面,恋爱是一个复杂的社交活动,它涉及到人类的感情、文化、社会…

3个技术男搞恋爱版 ChatGPT,估值70亿...

过去几个月,我们见证了GPT从3.5到4.0,从只能做结构化搜索整合到接近人类思维的对话,我们还看到了 GPT逐步掌握画画、写作、剪辑、制表、做 PPT 等技能。最可怕的是AI的迭代速度,简直是一天一个样。 这股这股前所未有的技术浪潮&am…

【ChatGPT情商大考验】ChatGPT教我谈恋爱

❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️ 👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博…

2023版ChatGPT 能用来帮助谈恋爱吗,如果用 ChatGPT 来谈恋爱会发生什么?

大家好啊,有没有和ChatGPT聊过天的“5G高手”们呢?ChatGPT是美国AI公司OpenAI开发出来的一款人工智能聊天机器,会通过学习和理解自然语言来跟我们聊天,不管你想聊啥,从诗歌到哲学,它都可以让你感觉像在跟一…

新手小白入门必看!如何批量注册Twitter账号?

Twitter是目前海外比较流行的社媒营销平台,所以很多从事跨境电商行业的朋友都需要利用多个Twitter账号来推广营销,但是注册和管理多个Twitter账号其实并不是简单的事情。龙哥将会在这里详细讲讲该如何批量注册并且让这些账号不会因为关联被封号&#xff…

谷歌邮箱账号不会注册?注册失败?这份完美注册教程请收好

谷歌邮箱相信大家都不陌生吧,无论是用于发送和接收邮件,还是用于在国外网站注册,很多人都离不开谷歌邮箱。甚至,一些网站直接提供谷歌邮箱登录选项。这就是为什么很多跨境人想要注册谷歌邮箱的原因。 但是,大部分网友都…

Kaggle账号注册

进行一下操作前请务必在翻墙条件下。 1.进入 Kaggle官网:https://www.kaggle.com/,点击Register; 2. 选择邮箱注册,Register with your email; 3. 填写信息,人机验证,点击Next;…

无需注册的ChatGPT来了,直接使用

火爆全网的 ChatGPT 已来 这次不用梯子,无需注册,国内入口 直接使用,极速体验!!! 还可以直接绑定公众号对话 WOW! 未来已来,你不来试试? 大语言模型绝对是一场新的革命 ChatGPT 和千行百业…

chatGPT的对手,Claude注册教程

完美替代chatGPT!Claude注册教程及浅浅的测评 注册 slack 访问地址:https://slack.com/ 点击使用电子邮件注册 建议使用Google邮箱进行登录, 当然使用Google邮箱登录需要使用魔法 登录成功后 创建Slack工作区 我的邀请链接 https://join.…

新消息,ChatGPT停止注册、大面积封号?

4 月 2 日,ChatGPT 大面积封号!尤其封亚洲地区的号,不少国内用户的号都被封(deactive)了 。 同多位当事人证实,情况属实,而且目前 ChatGPT 停止注册。 搜『V起来助手』公zz号,体验由V起来团队打造的ChatGPT…

ChatGPT开源平替——OpenChatKit(前OpenAI团队打造)

❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️ 👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博…

全球最大ChatGPT开源平替来了!支持35种语言,写代码、讲笑话全拿捏

【导读】刚刚,LAION发布了世界最大ChatGPT开源平替——OpenAssistant。网友上手实测后,纷纷表示这是开源的胜利。 世界最大的ChatGPT平替来了! OpenAssistant是一个开源的对话模型,基于Pythia和LLaMA微调而来,主要用…

ChatGPT开源平替(2)llama

最近,FacebookResearch 开源了他们最新的大语言模型 LLaMA,训练使用多达14,000 tokens 语料,包含不同大小参数量的模型 7B、13B 、30B、 65B,研究者可以根据自身算力配置进行选择。 经过测试,(1&#xff09…

ChatGPT的开源平替,终于来了!

最近这段时间,一个号称全球最大ChatGPT开源平替项目Open Assistant引起了大家的注意。 这不最近还登上了GitHub的Trending热榜。 https://github.com/LAION-AI/Open-Assistant 根据官方的介绍,Open Assistant也是一个对话式的大型语言模型项目&#xff…

追赶ChatGPT的难点与平替

卷友们好,我是rumor。 最近ChatGPT真的太火爆了,让人很难静下心。一方面是对它的能力感到不安,以后各个NLP子任务可能就统一起来了,范式也会变成预训练Prompt,不需要那么多精调模型的算法了。另一方面是对国内复现Chat…

ChatGPT开源平替(1)——ChatGLM

ChatGLM-6B 由清华大学唐杰团队开发的是一个开源的、支持中英双语的对话语言模型,基于 General Language Model (GLM) 架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB…

ChatGPT 的平替 Claude 使用指南

Claude的独立体验版本姗姗来迟,经过近半个月的等待后,收到了体验邮件,不过之前早已体验过poe和slack的集成版,响应速度上要比ChatGPT快很多。 目前提供的Model有: "claude-v1":我们最大的型号&am…

笔记本就能运行的ChatGPT平替来了,附完整版技术报告

来源:机器之心 本文约4300字,建议阅读8分钟 初步的技术报告简要描述了 GPT4All 的搭建细节。 GPT4All 是基于大量干净的助手数据(包括代码、故事和对话)训练而成的聊天机器人,数据包括~800k 条 GPT-3.5-Tur…