【XCPC笔记】2023 (ICPC) Jiangxi Provincial Contest——ABCHIJKL 做题记录

赛后gym练习及补题,gym链接:2023 (ICPC) Jiangxi Provincial Contest – Official Contest

补题顺序

  • L [Zhang Fei Threading Needles - Thick with Fine](https://codeforces.com/gym/104385/problem/L)
    • 题面解读
    • 参考代码
  • A [Drill Wood to Make Fire](https://codeforces.com/gym/104385/problem/A)
    • 题面解读
    • 参考代码
  • B [Wonderful Array](https://codeforces.com/gym/104385/problem/B)
    • 题面解读
    • 参考代码
  • I [Tree](https://codeforces.com/gym/104385/problem/I)
    • 题面解读
    • 参考代码
  • J [Function](https://codeforces.com/gym/104385/problem/J)
    • 题面解读
    • 参考代码
  • K [Split](https://codeforces.com/gym/104385/problem/K)
    • 题面解读
    • 参考代码
  • C [Battle](https://codeforces.com/gym/104385/problem/C)
    • 题面解读
    • 参考代码
  • H [Permutation](https://codeforces.com/gym/104385/problem/H)
    • 题面解读
    • 参考代码

L Zhang Fei Threading Needles - Thick with Fine

签到题

题面解读

当时在场人数为N,其中夏侯杰被吓死了,其他人被吓跑了,请问张飞吓跑了的人数是多少?

输出N-1即可

参考代码

#include<bits/stdc++.h>
using namespace std;int main()
{ios::sync_with_stdio(0), cin.tie(0);int n; cin >> n;cout << n - 1;return 0;
}

A Drill Wood to Make Fire

签到题

题面解读

钻木取火与钻木的速度与力量有关,当速度与力量的乘积大于某个阈值的时候,能够钻木取火成功。提供阈值、力量、速度,问是否能够取火成功。

参考代码

#include<bits/stdc++.h>
using namespace std;
int n, s, v;int main()
{ios::sync_with_stdio(0), cin.tie(0);int t; cin >> t;while(t--){cin >> n >> s >> v;if(s * v >= n) cout << "1\n";else cout << "0\n";}return 0;
}

B Wonderful Array

数学题

题面解读

给定一个长度为 k 的数组 a ,对于长度为 n 的数组 b
b i = { x , i = 0 b i − 1 + a i − 1 m o d k , 0 < i ≤ n b_{i}=\begin{cases}x,i=0\\ b_{i-1}+a_{i-1}\quad mod \quad k,0 <i\leq n\end{cases} bi={x,i=0bi1+ai1modk,0<in
找出 有多少个 i 使得 :
b i m o d m ≤ b i + 1 m o d m b_{i} \quad mod \quad m\leq b_{i+1}\quad mod \quad m bimodmbi+1modm
此处,由于 a[i] 大于 0,所以 b[i] 在不取模情况下一定是一个单调递增的。所以正向考虑满足题意的部分,直接顺序枚举会是一个 O(n) 的复杂度,题目限制 1s ,这样肯定超时。

那么,我们选择反向考虑,寻找能够使得 b[i] > b[i + 1] (取模后)的位置。由于对 m 取模,那么对于一个递增的数组,这个位置就应该每当数组递增超过 m 就出现一次。在整个b数组过程中,就应该有 b[n]/m 个。那么新的问题就是如何去计算 b[n] ?由于 数组 b 一直在对 k 取模,所以 数组 b 是一个周期性增减的,我们就不用去看整个数组b而是找其中一段。计算 数组b[n] 的办法详见代码。

最终答案的个数是 n - b[n]/m

参考代码

#include <bits/stdc++.h>
using namespace std;
using ll = long long;
const int K = 1e6 + 5;ll k, n, m, x;
ll arr[K];int main()
{ios::sync_with_stdio(0), cin.tie(0);cin >> k;for(int i = 0; i < k; ++i) cin >> arr[i];cin >> n >> m >> x;ll b = 0, cnt = 0;x = x % m;for(int i = 0; i < k; ++i) b += arr[i] % m;b = n / k * b + x;for(int i = 0; i < n % k; ++i) b += arr[i] % m;cout << n - b / m;return 0;
}

I Tree

异或

题面解读

一个 n 节点的树,结点连接的边有边权。执行 q 次操作:

  1. 对结点 x 到结点 y 的路径上每条边的边权异或 z
  2. 询问编号为 x 的结点的所有边的边权异或和。

此处,有个小的脑筋急转弯。比如,对于操作1,如果1-2-3这三个点按照这个顺序连接,当让1到3的路径上边权都异或上 w ,那么此时对于结点 2 ,它所连接的两个边的异或和是没有变化的:比如 1与2的边权为 3 ,2 与 3 的边权大小为 5,对结点 1 到结点 2 的路径上每条边的边权异或 2 ,对于结点2的边权异或和 3 ^ 5 == 3 ^ 2 ^ 5 ^ 2 == 3 ^ 5,因为对于一个数异或自己为0。

那么,操作1的修改只会对 x 和 y 有效。

参考代码

#include<bits/stdc++.h>
using namespace std;
const int N = 5e5 + 5;
int n, q, v[N];
int main()
{ios::sync_with_stdio(0), cin.tie(0);cin >> n >> q;for(int i = 1; i <= n - 1; ++i){int x, y, w;cin >> x >> y >> w;v[x] ^= w, v[y] ^= w;}while(q--){int op; cin >> op;if(op == 1){int x, y, z;cin >> x >> y >> z;v[x] ^= z, v[y] ^= z;}else{int x; cin >> x;cout << v[x] << '\n';}}return 0;
}

J Function

题面解读

给定多个一元二次函数,询问在某一点处的最小值是多少。

当给出一个一元二次函数的时候,我们就可以去通过这个函数去更新其他点上最小值是多少。而如果我们每给出一个函数,就去更新 1 ~ n 上所有点的话,最坏的时间复杂度就是 O(1e10),无法在1s 内跑完。

根据题目中 b b b 的数据范围肯定小于 1e5 ,那么当
( x − i ) 2 > b \left( x-i\right) ^{2} >b (xi)2>b
此时就不用再去维护这个最小值,因为肯定大于其他函数在这个位置上的最小值。

参考代码

#include<bits/stdc++.h>
using namespace std;
using ll = long long;
const int N = 2e5 + 5;ll arr[N], a, b;
int n, m;
int mxl = int(sqrt(1e5) + 0.5); // 向上取整,大概317void update(int x)
{arr[x] = min(arr[x], b);for(int i = x - 1, j = 1; i >= 1 && j <= mxl; ++j, --i)arr[i] = min(arr[i], j * j + b);for(int i = x + 1, j = 1; i <= n && j <= mxl; ++j, ++i)arr[i] = min(arr[i], j * j + b);
}int main()
{ios::sync_with_stdio(0), cin.tie(0);cin >> n;memset(arr, 0x3f, sizeof arr);for(int i = 1; i <= n; ++i){cin >> b;update(i);}cin >> m;for(int i = 1; i <= m; ++i){int op; cin >> op;if(op){cin >> a; cout << arr[a] << "\n";}else{cin >> a >> b;update(a);}}return 0;
}

K Split

题面解读

题目中给出了一个长度为 n n n 的非增序列。进行 m m m 次操作,分为两种:

操作0,给你一个 1 < x < n 1 <x <n 1<x<n ,使得 a x = a x + 1 + a x − 1 − a x a_{x}=a_{x+1}+a_{x-1}-a_{x} ax=ax+1+ax1ax

操作1,将序列分成 k k k 个小块,其中每个小块的最大值-最小值之和要最小,并且输出每个小块中最大值-最小值之和最小值。

对于操作1,随机挑选一段,结果为: a 1 − a i + a i + 1 − . . . − a j + a j + 1 − a n a_1 - a_i + a_{i+1} -... - a_j + a_{j+1} - a_n a1ai+ai+1...aj+aj+1an, 整理后得: a 1 − a n + a i + 1 − a i + a j + 1 − a j . . . a_1 - a_n + a_{i+1} - a_i + a_{j+1} - a_j ... a1an+ai+1ai+aj+1aj...。可以看出,前两项一定且大于0,后面每两项都是相邻两数之差且小于等于0(后一项-前一项)。因此,为了让最大值减最小值之和最小,我们挑选这个序列中最小的 k − 1 k-1 k1 个差就可以了。

对于操作0,对序列中某段 a x − 1 , a x , a x + 1 a_{x-1},a_x,a_{x+1} ax1,ax,ax+1,转变为 a x − 1 , a x + 1 + a x − 1 − a x , a x + 1 a_{x-1},a_{x+1}+a_{x-1}-a_{x},a_{x+1} ax1,ax+1+ax1ax,ax+1
对于初始情况,这一段的后一项-前一项为: a x − a x − 1 , a x + 1 − a x a_x - a_{x-1},a_{x+1}-a_x axax1,ax+1ax,改变之后为: a x − 1 − a x , a x − a x + 1 a_{x-1}-a{x},a_{x}-a_{x+1} ax1ax,axax+1。可见,这一波操作并没有对整个序列的差分造成什么影响。所以后续代码中也不会对操作0进行任何处理。

参考代码

#include<bits/stdc++.h>
using namespace std;
const int N = 1e6 + 5;
typedef long long ll;
int n, m;
ll a[N], b[N];int main()
{ios::sync_with_stdio(0), cin.tie(0);cin >> n;for(int i = 0; i < n; ++i) cin >> a[i];for(int i = 1; i < n; i++) b[i] = a[i] - a[i - 1]; // 计算上述后项与前项的差sort(b + 1, b + n); // 将差分结果排序for(int i = 1; i < n; i++) b[i] = b[i] + b[i - 1]; // 将排序完的结果计算前缀和,方便后续查询直接使用cin >> m;while(m--){int op, k;cin >> op >> k;if(op == 1) cout << a[0] - a[n - 1] + b[k - 1] << "\n"; // 只要选择前 K-1 项即可}return 0;
}

C Battle

题面解读

博弈论中一个经典的Nim游戏,为了补题,专门去看了一眼什么是公平组合游戏。虽然看了,感觉明白了但没完全明白,感兴趣的可以去看看大佬的博客,本蒟蒻还得再吸收理解几遍。
推荐参考理解的博客:算法学习笔记(51): SG函数 、公平组合游戏

参考代码

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int n;
ll p, ans;ll sg(ll x)
{if(x == p) return 2;if(x&1) return 1;return 0;
}int main()
{ios::sync_with_stdio(false);cin.tie(0);cin >> n >> p;for (int i = 0; i < n; i++){ll t;cin >> t;if (p & 1){if(t&1) ans ^= 1;else ans ^= 0;}else{ans ^= sg(t % (p + 1));}}if(ans) cout << "GOOD\n";else cout << "BAD\n";return 0;
}

H Permutation

多重背包问题

题面解读

给定一个长度为 n n n 的排列(其中 n n n 一定为偶数),现在将其从中间分成两个序列 A A A B B B ,每次执行如下操作:

  • 如果序列 A A A 和序列 B B B 都为空,停止操作
  • 如果序列 A A A B B B 只有一个为空,将剩余部分放在序列 P P P 的后面
  • 如果 A A A B B B 都不为空,将 A A A B B B 首位第一个中最小的一个从原序列中删除,并放入序列 P P P 后面

现在给定序列 P P P,问对于 n n n 的所有排列,是否存在一种使得经过上述操作后成为序列 P P P

经过观察题面样例可以发现,在排列中,一个数到比其大的数都必须放入一个序列中,如图:
在这里插入图片描述

那么就可以将题目中所给序列P按照长度划分为多个物品,每个物品我们需要记录其长度即可,将长度一样的子序列当作同种物品,每种物品有多个。这样,就相当于从这些物品中找到能够凑出长度为 n / 2 n/2 n/2 的方案,多重背包由此得出。
不过此处如果按照普通多重背包去处理,担心可能会超时,所以我们考虑,对于每个物品进行二进制优化(为什么要进行二进制优化可以参考OI-wiki 背包 DP)。

题目中还有一处需要注意的点,就是需要开long long,蒟蒻没有开 long long,喜提 Wrong answer on test 21

参考代码

#include<bits/stdc++.h>
using namespace std;
const int N = 5e5 + 5;
typedef long long ll;
ll n, arr[N], dp[N];void solve()
{cin >> n;for(int i = 1; i <= n; i++) cin >> arr[i];ll mx = arr[1], cnt = 1, tg = n / 2;map<ll, ll> mp;// 按照规律将数字长度划分到一组中for(int i = 2; i <= n; i++){mx = max(mx, arr[i]);if(mx == arr[i]){mp[cnt]++;cnt = 1;}else{cnt++;if(cnt > tg) { cout << "No\n"; return;}}}mp[cnt]++;// 将长度一样的当作同种物品,按照多重背包二进制优化存储vector<ll> things;for(auto x : mp){cnt = 1;while(x.second >= cnt){things.push_back(x.first * cnt);x.second -= cnt;cnt *= 2;}if(x.second > 0) things.push_back(x.first * x.second);}// 多重背包部分for(int i = 1; i <= tg; ++i) dp[i] = 0;dp[0] = 1;for(int i = 0; i < things.size(); ++i){for(int j = tg; j >= things[i]; --j)dp[j] += dp[j - things[i]];if(dp[tg] >= 1) {cout << "Yes\n"; return;}}cout << "No\n";
}int main()
{ios::sync_with_stdio(0), cin.tie(0);int t; cin >> t;while(t--) solve();return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/300003.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【数据结构与算法】力扣 24. 两两交换链表中的节点

题目描述 给你一个链表&#xff0c;两两交换其中相邻的节点&#xff0c;并返回交换后链表的头节点。你必须在不修改节点内部的值的情况下完成本题&#xff08;即&#xff0c;只能进行节点交换&#xff09;。 示例 1&#xff1a; 输入&#xff1a; head [1,2,3,4] 输出&#…

迷茫下是自我提升

长夜漫漫&#xff0c;无心睡眠。心中所想&#xff0c;心中所感&#xff0c;忧愁当前&#xff0c;就执笔而下&#xff0c;写下这篇文章。 回忆过往 回想当初为啥学前端&#xff0c;走前端这条路&#xff0c;学校要求嘛&#xff0c;兴趣爱好嘛&#xff0c;还是为了钱。 时间带着…

使用GPT需要注意的事项

GPT出来之后&#xff0c;基本就告别浏览器搜索问题答案了。将问题原封不动的copy给GPT基本可以得到解答。 但是这个也有弊端&#xff0c;那就是太依赖GPT了。 1&#xff0c;使用GPT需要更强的专业知识&#xff1a;除了能问对问题&#xff0c;还要具备识别GPT&q…

WordPress 6.5 “里贾纳”已经发布

WordPress 6.5 “里贾纳”已经发布&#xff0c;其灵感来自著名爵士小提琴家Regina Carter的多才多艺。雷吉娜是一位屡获殊荣的艺术家和著名的爵士乐教育家&#xff0c;以超越流派而闻名&#xff0c;她在古典音乐方面的技术基础和对爵士乐的深刻理解为她赢得了大胆超越小提琴所能…

华为ICT七力助推文化产业新质生产力发展

创新起主导作用的新质生产力由新劳动者、新劳动对象、新劳动工具、新基础设施等四大要素共同构成&#xff0c;符合新发展理念的先进生产力质态&#xff1b;具有高科技、高能效、高质量等三大突出特征。而通过壮大新产业、打造新模式、激发新动能&#xff0c;新质生产力能够摆脱…

求m和n的最大公约数(C语言)

一、运行结果&#xff1b; 二、源代码&#xff1b; # define _CRT_SECURE_NO_WARNINGS # include <stdio.h>int main() {//初始化变量值&#xff1b;int remainder 1;int m 0;int n 0;int middle 0;//提示用户&#xff1b;printf("请输入整数m和n的值&#xff…

大模型技术ollama入门教程

下载 下载&#xff1a;https://ollama.com/download 我下载的是Windows版本&#xff1a; Docker启动 使用Docker启动要更简单点。 拉取镜像&#xff1a; docker pull ollama/ollama使用CPU启动&#xff1a; docker run -d -v ollama:/root/.ollama -p 11434:11434 --nam…

SpringBoot mybatis-starter解析

mybatis-starter使用指南 自动检测工程中的DataSource创建并注册SqlSessionFactory实例创建并注册SqlSessionTemplate实例自动扫描mappers mybatis-starter原理解析 注解类引入原理 查看对应的autoconfigure包 MybatisLanguageDriverAutoConfiguration 主要是协助使用注解来…

winforms倒计时器程序

using System; using System.Windows.Forms;namespace WindowsForms {public partial class Form1 : Form{public Form1(){InitializeComponent();}private void Form1_Load(object sender, EventArgs e){button1.Text "开始计时";label1.Text "时长";la…

Hackthebox IClean

靶机信息IP/难度Medium网址https://app.hackthebox.com/machines/IClean状态Active系统Linux Python XSS, SSTI 端口扫描 PORT STATE SERVICE VERSION 22/tcp open ssh OpenSSH 8.9p1 Ubuntu 3ubuntu0.6 (Ubuntu Linux; protocol 2.0) | ssh-hostkey: | 256 2cf9077…

数字逻辑分析仪初体验

为啥会用到这玩意儿&#xff0c;要从一个荒诞的需求开始。想在市面上找一款特别低空飞行的监控&#xff0c;而且不想它一直开着监控&#xff0c;最好是我在外面远程指挥它起飞&#xff0c;飞去厨房&#xff0c;飞去洗手间&#xff0c;甚至飞去阳台&#xff0c;查看水龙头情况啊…

uniapp使用npm命令引入font-awesome图标库最新版本

uniapp使用npm命令引入font-awesome图标库最新版本 图标库网址&#xff1a;https://fontawesome.com/search?qtools&or 命令行&#xff1a; 引入 npm i fortawesome/fontawesome-free 查看版本 npm list fortawesome在main.js文件中&#xff1a; import fortawesome/fo…

【二分查找】Leetcode 山脉数组的峰顶索引

题目解析 852. 山脉数组的峰顶索引 这到题使用暴力枚举的查找方法发现这段数组是有二段性的&#xff0c;峰顶左边的一段区间是一段递增区间&#xff0c;右边的一段区间是一段递减区间 算法讲解 class Solution { public:int peakIndexInMountainArray(vector<int>&am…

C++ 【桥接模式】

简单介绍 桥接模式属于 结构型模式 | 可将一个大类或一系列紧密相关的类拆分 为抽象和实现两个独立的层次结构&#xff0c; 从而能在开发时分别使用。 聚合关系&#xff1a;两个类处于不同的层次&#xff0c;强调了一个整体/局部的关系,当汽车对象销毁时&#xff0c;轮胎对象…

算法刷题Day27 | 39. 组合总和、40.组合总和II、131.分割回文串

目录 0 引言1 组合总和1.1 我的解题 2 组合总和II2.1 解题 3 分割回文串3.1 切割3.2 总结&#xff1a;分割和组合的区别 &#x1f64b;‍♂️ 作者&#xff1a;海码007&#x1f4dc; 专栏&#xff1a;算法专栏&#x1f4a5; 标题&#xff1a;算法刷题Day27 | 39. 组合总和、40.…

Springboot相关知识-图片描述(学习笔记)

学习java过程中的一些笔记&#xff0c;觉得比较重要就顺手记录下来了~ 目录 一、前后端请求1.前后端交互2.简单传参3.数组集合传参4.日期参数5.Json参数6.路径参数7.响应数据8.解析xml文件9.统一返回类10.三层架构11.分层解耦12.Bean的声明13.组件扫描14.自动注入 一、前后端请…

JVM—类加载子系统

JVM—类加载子系统 JVM的类加载是通过ClassLoader及其子类来完成的。 有哪些类加载器 类加载器如下&#xff1a; 启动类加载器&#xff08;BootStrap ClassLoader&#xff09;&#xff1a;负责加载JAVA_HOME\lib目录或通过-Xbootclasspath参数指定路径中的且被虚拟机认可&am…

YB4554是一款高性价比、完全集成的高输入电压单节锂离子电池充电器

概述&#xff1a; YB4554是一款高性价比、完全集成的高输 入电压单节锂离子电池充电器。充电器使用 锂离子电池所需的CC/CV充电配置文件。该 充电器接受高达24V的输入电压&#xff0c;但当输入 电压超过OVP阈值(通常为6.8V)时禁用&#xff0c; 以防止过度功耗。24V额定值消除了…

解锁金融数据中心场景,实现国产化AD替代,宁盾身份域管为信创电脑、应用提供统一管理

随着信创国产化改造持续推进&#xff0c;越来越多的金融机构不断采购信创服务器、PC、办公软件等&#xff0c;其 IT 基础设施逐渐迁移至国产化 IT 架构下。为支撑国产化 IT 基础设施的正常使用和集中管理运维&#xff0c;某金融机构数据中心的微软Active Directory&#xff08;…

DFS-0与异或问题,有奖问答,飞机降落

代码和解析 #include<bits/stdc.h> using namespace std; int a[5][5]{{1,0,1,0,1}}; //记录图中圆圈内的值&#xff0c;并初始化第1行 int gate[11]; //记录10个逻辑门的一种排列 int ans; //答案 int logic(int x, int y, int op){…