科技云报道:卷完参数卷应用,大模型落地有眉目了?

科技云报道原创。

国内大模型战场的比拼正在进入新的阶段。
在这里插入图片描述
随着产业界对模型落地的态度逐渐回归理性,企业客户的认知从原来的“觉得大模型什么都能做”的阶段,已经收敛到“大模型能够给自身业务带来什么价值上了”。

2023 年下半年,不少企业将目光锁定在行业模型上。如何降低大模型使用门槛,让大模型真正在行业里用起来,是业内普遍关注的焦点。

由此,国内厂商在大模型上的认知也在逐步统一——百度创始人李彦宏认为“卷大模型没有意义,卷应用机会更大”;腾讯高管汤道生表示“大模型只是开端,行业应用才是未来”;华为云CEO张平安明确大模型“为行业而生,聚焦B端行业客户”,更直言盘古大模型“没时间作诗、没时间聊天”。

这也意味着,更多大模型厂商将开始卷应用,这会是今年竞争最为激烈的板块之一。

大模型行业落地渴望 “开箱即用”

过去半年,大模型To B的落地应用摸索已经度过尝鲜期。

对于企业而言,他们希望更快使用上大模型,在市场竞争中获得优势。但大模型的技术门槛很高,因此企业并不会从头开始训练自己的基础大模型,更多是基于某个成熟的大模型做二次开发。

然而,想借用好现有的通用大模型,企业仍面临着三大难题:

首先,各类企业的场景需求、复杂程度、智能化程度千差万别,大模型能力边界与企业的场景需求如何快速、准确匹配;

其次,从模型到应用中间还需要诸多技术桥梁,诸如SFT、RAG、LangChain、Agent等技术,如何与大模型有机组合达成最优解;

第三,企业过去积累了大量IT设施、软件、企业数据、业务流程,如何让大模型与现有设施结合的情况下,保障企业数据信息安全。

换句话说,企业无论是基于开源或闭源的通用大模型来做行业化落地,都远没有到达开箱即用的程度。

不过这也成为大模型厂商在竞争中突围的方向,除了要在底层技术上继续夯实外,补足行业Know-how和成功经验也是重中之重。

在百度和阿里的发展经验中,似乎可以给大模型行业一些启示。

其中,百度用搭建行业模型、垂直场景模型和应用的方式赋能具体行业。

2023年3月,百度智能云推出千帆大模型平台,从算力、模型、到应用层层结合,为企业提供一整套大模型开发工具。

一年后,基于一线经验积累和实战反馈,百度智能云抽取出“研、产、供、销、服”环节中的典型场景,于近日推出了5款全新模型和7款应用产品,来解决企业用好大模型的“三大难题”。

以此次发布的国内首款大模型全面重构的智能客服——百度智能云客悦为例,相比传统客服,客悦可结合大模型的理解、推理、记忆能力,实现更友好的对话、更高效的运营。
在这里插入图片描述
比如,当用户提问“我的车总有吱吱吱的声音”,传统客服无法理解“吱吱吱”这种口语化的表达。

而客悦在大模型的加持下,会继续追问用户该问题持续的时间和频次,并通过推理反馈用户,可能是皮带老化或者张紧轮松动导致,建议到店检查。

若用户反馈没时间检查,客悦还会基于自身知识库,提醒不检修可能导致车辆失去动力、长期会引起发动机故障等问题,引起用户重视,守护行车安全。目前,用户问题自助解决率已超过90%。

在运营效率方面,上一代的传统智能客服进行业务办理、知识咨询、闲聊等能力,需要花费的人效约100人/天,而客悦仅需约15.5人/天,大模型客服运营效率提升6倍。

目前为止,百度智能云已经布局了电力、汽车、金融、政务等十余个行业大模型,并取得了不错的效果,客户中也出现了国家电网、浦发银行、泰康、吉利等知名企业。

相比之下,阿里采用了另一套逻辑:赋能于内部已有应用和服务,再技术外溢至行业客户。

除已经发布“通义千问”大模型外,夸克也发布了自研大模型,应用于通用搜索、医疗健康等场景;后加之内部推行“云钉一体”,作为办公一体化平台,钉钉上线AI魔法棒,推出17项与AI相关服务,也为通义千问大模型助力颇多。

同时,阿里也提供了不少类似于Anyone fit类型的图像模型解决方案,其工具十分贴合电商需求场景。

因在电商、物流层面的深厚积累,让阿里拥有了对不同领域的行业特点、业务流程和客户需求有了充分的认识。

基于此,阿里的产品便可以在深度了解用户需求的基础上,为客户提供定制化的解决方案,满足其业务需求,提高其业务效率和竞争力。这让大模型有了其应有之意,不至于沦落为“无源之水”。

头部大厂领跑大模型行业落地

在大模型的 toB 竞争中,本质而言,是取决于客户企业对商业价值的认知。和其他行业一样,在大模型领域,“多快好省” 和 “物美价廉” 难以两全,匆忙上阵的结果可能是一地鸡毛。

因此,企业客户在大模型的选择上更为审慎。尽管大模型的应用还在初期,但企业在模型选择、模型可靠性、应用成本、使用门槛等层面,已有各种考量和顾虑。

百度集团副总裁侯震宇曾在采访中表示:“最终能够让大模型服务推广开的只有两个原因:第一个是模型效果,第二个是成本。”

以百度智能云为例,其大模型的调用和训练成本一直在下降。文心一言开启内测后,一个月就迭代了四次。

根据百度披露的数据,文心一言的推理成本如今只有发布之初的十分之一,在发布的3个月内推理效率提升10倍,模型推理性能提升50%,模型算力利用率提升1倍。

侯震宇透露,随着技术迭代带来的成本下降,不管是在模型使用,还是在模型微调甚至在模型再训练方面,“价格应该不会成为大家使用或者拥抱大模型的瓶颈”。

与此同时,在SuperCLUE中文大模型7月最新榜单中,百度的大语言模型产品文心一言以62分的总成绩一举超越越GPT-3.5-turbo(59.79)和ChatGLM-130B(59.35)等,稳居行业头部。

除了成本和效果,大模型从开发、应用到调优的每一个环节如何落地,如何基于数据安全合规进行私有化部署等,都是企业客户重点关注的问题。

例如,很多企业需要的聊天机器人,并不是选择具备强大通用能力的大模型就可以,还要求大模型厂商能够提供易用性、完备度、安全性、稳定性都有保证的工具链。

在关注大模型技术栈完备性的同时,企业还需要选择适合自身业务的大模型厂商——既有充分的产业应用经验积累,也能够将技术应用到实际业务场景中。

目前,百度智能云推出的千帆大模型平台就拥有较为全面的数据服务能力,从生成、标注、回流再到模型训练(Post-pretraining、Fine-tuning、Prompt-tuning)、模型评估(主观评估、客观评估)和压缩、自动化 Prompt 工程、到插件应用编排,客户都可以在千帆上一站式完成。

这意味着企业客户可以将基于千帆平台从0开始训练自己的专属模型,同时训练好的模型也可以部署和托管在千帆平台上,获得极致的性能、企业级的高可用性和安全环境。

由于千帆平台已经制备了开箱即用的使用流程,用可视化产品界面的方式引导用户使用,极大降低了使用门槛。对于企业级市场比较担心的安全可靠问题,也内置了安全机制,确保模型的输入和输出的安全。

不久前,IDC发布的《AI大模型技术能力评估报告,2023》对国内主流大模型,包括百度、阿里、腾讯、华为、科大讯飞、360、商汤等14家厂商参进行了评估。

IDC分别对大模型的平台、创新、通用、算法、服务、生态合作、行业覆盖和安全可解释性等诸多方面进行了评价,其中百度 7 个满分,阿里 6 个满分。百度在算法模型、行业覆盖领域拿下行业唯一满分。

可以看到,头部大厂的大模型产品已经有所成效。相较之下,部分初创和腰部公司开始呈现疲态。

从光年之外退出竞争、讯飞大幅亏损难以支撑大模型投入便可以得知,一些 “笨鸟先飞” 的企业已逐渐落后于发展大势。

对于企业业务而言,现阶段更加稳妥的方式还是在大厂之间做出抉择。大厂大模型更能保证服务交付、运维和维保,这也是企业对自身向智能化方向转型更加负责任地选择。

结语

随着企业研发、生产、销售、人力等各项业务场景数字化深入,如何借助大模型的力量,发挥出应用的最大价值,正成为企业商业制胜的关键所在。

接下来的竞争,对于企业而言,不再是局限于大模型的追逐,而是如何基于大模型对应用产品进行自我优化和革新。

对于大模型厂商而言,比拼的不仅是算力、算法和数据,未来长期的发展比的更是落地应用、生态渠道、客户服务、运维等系统性、全面性的支持。

这需要厂商具备强大的技术水平,以及不断迭代升级的能力。要满足可控和合规的要求,也需要厂商有较强的综合能力,能够长期稳定的投入人力物力。

【关于科技云报道】

专注于原创的企业级内容行家——科技云报道。成立于2015年,是前沿企业级IT领域Top10媒体。获工信部权威认可,可信云、全球云计算大会官方指定传播媒体之一。深入原创报道云计算、大数据、人工智能、区块链等领域。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/300048.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

mac老版本如何升级到最新版本

mac老版本如何升级到最新版本 老macbook升级新版本(Big sur、Monterey) 首先介绍我的电脑的机型及情况: 2015年初的MacBook Air 处理器是1.6Hz 双核Interl Core i5 内存4G 老版本只能升到10.13 想要升到最高版本的原因:想要注册…

JVM 组成

文章目录 概要JVM 是 Java程序的运行环境(java二进制字节码的运行环境)JVM 的主要组成部分运行流程:程序计数器堆元空间方法区常量池运行时常量池 概要 JVM 是 Java程序的运行环境(java二进制字节码的运行环境) 好处&…

【排列回溯】Leetcode 46. 全排列 47. 全排列 II

【排列回溯】Leetcode 46. 全排列 47. 全排列 II 46 全排列——used数组上下层保证不取重复的即可47. 全排列 II——used去重上下层,再去重本层重复元素 46 全排列——used数组上下层保证不取重复的即可 ---------------🎈🎈题目链接&#x…

MySQL复制拓扑2

文章目录 主要内容一.配置基本复制结构1.分别在三台主机上停止mysqld服务,并对状态进行确认:代码如下(示例): 2.对三个MySQL服务器的配置文件分别进行编辑,在[mysqld] 选项组中添加以下红色条目:3.在数据目…

如何查询网站是否被搜索引擎收录

怎么看网站有没有被百度收录 对于网站所有者来说,了解自己的网站是否被百度搜索引擎收录是非常重要的。只有被收录,网站才能在百度搜索结果中展现,从而获取流量和曝光。下面介绍几种方法,让您快速了解自己的网站是否被百度收录。…

Maven--lib分离的打包方式

就是把lib包和source源码分开打包。优势就是,面对频繁更新的应用场景时,可以只更新源码包(当然,前提是你的依赖没有增减)。尤其是使用jenkins更新项目时,会省去很多时间吧? 不同项目的 lib之间不…

C++初级----string类(STL)

1、标准库中的string 1.1、sring介绍 字符串是表示字符序列的类,标准的字符串类提供了对此类对象的支,其接口类似于标准字符容器的接口,但是添加了专门用于操作的单字节字符字符串的设计特性。 string类是使用char,即作为他的字符…

【无标题】【Android】Android中Intent的用法总结

2.显示地图: Java代码 Uri uri Uri.parse(“geo:38.899533,-77.036476”); Intent it new Intent(Intent.Action_VIEW,uri); startActivity(it); 3.从google搜索内容 Java代码 Intent intent new Intent(); intent.setAction(Intent.ACTION_WEB_SEARCH); intent.pu…

Java 哈希表

一、哈希表的由来 我们的java程序通过访问数据库来获取数据,但是当我们对数据库所查询的信息进行大量分析后得知,我们要查询的数据满足二八定律,一般数据库的数据基本存储在磁盘当中。这使得每次查询数据将变得无比缓慢。为此我们可以将经常…

vue实现验证码验证登录

先看效果&#xff1a; 代码如下&#xff1a; <template><div class"container"><div style"width: 400px; padding: 30px; background-color: white; border-radius: 5px;"><div style"text-align: center; font-size: 20px; m…

算法打卡day36|动态规划篇04| 01背包理论基础、416. 分割等和子集

目录 01背包理论基础 01背包问题描述 01背包解法 二维数组 一维数组 算法题 Leetcode 416. 分割等和子集 个人思路 解法 动态规划 01背包理论基础 不同的背包种类&#xff0c;虽然有那么多中南背包&#xff0c;但其中01背包和完全背包是重中之重&#xff1b; 01背包问…

智能感应门改造工程

今天记录一下物联网专业学的工程步骤及实施过程 智能感应门改造工程 1 规划设计1.1 项目设备清单1.2项目接线图 软件设计信号流 设备安装与调试工程函数 验收 1 规划设计 1.1 项目设备清单 1.2项目接线图 软件设计 信号流 设备安装与调试 工程函数 工程界面: using System; …

银行监管报送系统介绍(十五):金融审计平台

《“十四五”国家审计工作发展规划》中重点强调&#xff0c;金融审计&#xff1a;以防范化解重大风险、促进金融服务实体经济&#xff0c;推动深化金融供给侧结构性改革、建立安全高效的现代金融体系为目标&#xff0c;加强对金融监管部门、金融机构和金融市场运行的审计。 —…

蓝奏云直链获取在线解析网站源码

源码简介 蓝奏云直链获取在线解析网站源码 蓝奏云链接解析 本地API接口 支持有无密码和短期直链和永久直链&#xff0c;同时还可以显示文件名和大小。 这个解析器无需数据库即可搭建&#xff0c;API接口已经本地化&#xff0c;非常简单易用。 安装环境 php5.6 搭建教程 …

多功能echarts柱状图

数据结构: data = [{name: 类别1,value: 15,children: [{name: 项目1-1,value: 87,value2: 3.3,},{name: 项目1-2,value: 80,value2: 2.6,},{name: 项目1-3,value: 79,value2: 3.8,},]},{name: 类别2,value: 15,children: [{name: 项目2-1,value: 70,value2: 1.5,},{name: 项…

【数据结构】红黑树详解

目录 前言&#xff1a; 红黑树的概念&#xff1a; 红黑树的性质: 红黑树节点的定义&#xff1a; 红黑树的插入&#xff1a; 情况1&#xff1a;cur为红&#xff0c;p为红&#xff0c;g为黑&#xff0c;u存在且为红 情况2&#xff1a;cur为红&#xff0c;p为红&#xff0c…

【Java EE】关于Maven

文章目录 &#x1f38d;什么是Maven&#x1f334;为什么要学Maven&#x1f332;创建⼀个Maven项目&#x1f333;Maven核心功能&#x1f338;项目构建&#x1f338;依赖管理 &#x1f340;Maven Help插件&#x1f384;Maven 仓库&#x1f338;本地仓库&#x1f338;私服 ⭕总结 …

电商平台混战之下,天猫破解品牌增长奥秘

行业共识是追上风&#xff0c;才有好生意&#xff0c;但风很多时候不会只有一个方向。 4月2日&#xff0c;上海&#xff0c;TopTalk 2024天猫超级品牌私享会举行。这个活动已举办数年&#xff0c;每一年天猫都会发布新一年度的品牌经营策略&#xff0c;只是与往年不同的是&…

从零开始学起!全方位解析App压力测试的关键要点!

简介 Monkey 是 Google 提供的一个用于稳定性与压力测试的命令行工具 可以运行在模拟器或者实际设备中 它向系统发送伪随机的用户事件对软件进行稳定性与压力测试 为什么要用 Monkey Monkey 就是像猴子一样上蹿下跳地乱点 为了测试软件的稳定性&#xff0c;健壮性 随机点…

区间概率预测python|QR-CNN-BiLSTM+KDE分位数-卷积-双向长短期记忆神经网络-时间序列区间概率预测+核密度估计

区间预测python|QR-CNN-BiLSTMKDE分位数-卷积-双向长短期记忆神经网络-核密度估计-回归时间序列区间预测 模型输出展示&#xff1a; (图中是只设置了20次迭代的预测结果&#xff0c;宽度较宽&#xff0c;可自行修改迭代参数&#xff0c;获取更窄的预测区间&#xff09; 注&am…