算法打卡day36|动态规划篇04| 01背包理论基础、416. 分割等和子集

目录

01背包理论基础

01背包问题描述

01背包解法

二维数组

一维数组

算法题

Leetcode 416. 分割等和子集

 个人思路

解法

动态规划


01背包理论基础

不同的背包种类,虽然有那么多中南背包,但其中01背包和完全背包是重中之重

01背包问题描述

有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

例子:背包最大重量为4

物品为:

重量价值
物品0115
物品1320
物品2430

01背包解法

二维数组

动规五部曲

1.确定dp数组以及下标的含义

使用二维数组,即dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少

要时刻记着这个dp数组的含义,下面的一些步骤都围绕这dp数组的含义进行的,如果哪里看懵了,就来回顾一下i代表什么,j又代表什么。

2.确定递推公式

再回顾一下dp[i][j]的含义:从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。那么可以有两个方向推出来dp[i][j],

  • 不放物品i:由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。(其实就是当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以背包内的价值依然和前面相同。)
  • 放物品i:由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值

所以递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

3.dp数组如何初始化

初始化时一定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱

首先从dp[i][j]的定义出发,背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0

dp[0][j],即:i为0存放编号0的物品的时候,各个容量的背包所能存放的最大价值

那么很明显当 j < weight[0]的时候,dp[0][j] 应该是 0,因为背包容量比编号0的物品重量还小。

当j >= weight[0]时,dp[0][j] 应该是value[0],因为背包容量放足够放编号0物品。

其他下标初始为什么数值都可以,因为都会被覆盖。初始-1,初始-2,初始100,都可以!

如图:

4.确定遍历顺序

在如下图中,一共有两个遍历的维度:物品与背包重量

dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 递归公式中可以看出dp[i][j]是靠dp[i-1][j]和dp[i - 1][j - weight[i]]推导出来的。

dp[i-1][j]和dp[i - 1][j - weight[i]] 都在dp[i][j]的左上角方向(包括正上方向),那么先遍历物品,再遍历背包的过程如图所示:

再来看看先遍历背包,再遍历物品呢,如图:

虽然两个for循环遍历的次序不同,但是dp[i][j]所需要的数据就是左上角,根本不影响dp[i][j]公式的推导!但先遍历物品再遍历背包这个顺序更好理解.

5.举例推导dp数组

对应的dp数组的数值,如图:


一维数组

在使用二维数组的时候,递推公式:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

如果把dp[i - 1]那一层拷贝到dp[i]上,表达式完全可以是:dp[i][j] = max(dp[i][j], dp[i][j - weight[i]] + value[i]);与其把dp[i - 1]这一层拷贝到dp[i]上,不如只用一个一维数组了,只用dp[j](一维数组,也可以理解是一个滚动数组)。

这就是滚动数组的由来,需要满足的条件是上一层可以重复利用,直接拷贝到当前层

dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少

动规五部曲分析如下:

1.确定dp数组的定义

在一维dp数组中,dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。

2.一维dp数组的递推公式

dp[j]可以通过dp[j - weight[i]]推导出来,dp[j - weight[i]]表示容量为j - weight[i]的背包所背的最大价值。

dp[j - weight[i]] + value[i] 表示 容量为 j - 物品i重量 的背包 加上 物品i的价值。(也就是容量为j的背包,放入物品i了之后的价值即:dp[j])

此时dp[j]有两个选择,一个是取自己dp[j] 相当于 二维dp数组中的dp[i-1][j],即不放物品i,一个是取dp[j - weight[i]] + value[i],即放物品i,指定是取最大的,毕竟是求最大价值,

所以递归公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

3.一维dp数组如何初始化

dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j],那么dp[0]就应该是0因为背包容量为0所背的物品的最大价值就是0。

因为dp数组在推导的时候一定是取价值最大的数,所以非0下标都初始化为0就可以了。这样才能让dp数组在递归公式的过程中取的最大的价值,而不是被初始值覆盖了

4.一维dp数组遍历顺序

for(int i = 0; i < weight.size(); i++) { // 遍历物品for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);}
}

与二维dp不同的是一维dp遍历的时候是倒序遍历,背包是从大到小。倒序遍历是为了保证物品i只被放入一次!。但如果一旦正序遍历了,那么物品0就会被重复加入多次.

举一个例子:物品0的重量weight[0] = 1,价值value[0] = 15

如果正序遍历

dp[1] = dp[1 - weight[0]] + value[0] = 15

dp[2] = dp[2 - weight[0]] + value[0] = 30

此时dp[2]就已经是30了,意味着物品0,被放入了两次,所以不能正序遍历。

倒序就是先算dp[2]

dp[2] = dp[2 - weight[0]] + value[0] = 15 (dp数组已经都初始化为0)

dp[1] = dp[1 - weight[0]] + value[0] = 15

所以从后往前循环,每次取得状态不会和之前取得状态重合,这样每种物品就只取一次了

而对于二维dp,dp[i][j]都是通过上一层即dp[i - 1][j]计算而来,本层的dp[i][j]并不会被覆盖,所以不用倒序。

还有就是一维DP只能是先遍历物品嵌套遍历背包容量,因为一维dp的写法,背包容量一定是要倒序遍历(原因上面已经讲了),如果遍历背包容量放在上一层,那么每个dp[j]就只会放入一个物品,即:背包里只放入了一个物品。

5.举例推导dp数组

一维dp,分别用物品0,物品1,物品2 来遍历背包,最终得到结果如下:


算法题

Leetcode 416. 分割等和子集

题目链接:416. 分割等和子集

 大佬视频讲解:分割等和子集视频讲解

 个人思路

这道题可以化成01背包问题,等和子集的和就是背包容量,然后按照01背包的思路去解就好

解法
动态规划

题要求集合里能否出现总和为 sum / 2 的子集。

确定如下四点,把01背包问题套到本题

  • 背包的体积为sum / 2
  • 背包要放入的商品(集合里的元素)重量为 元素的数值,价值也为元素的数值
  • 背包如果正好装满,说明找到了总和为 sum / 2 的子集。
  • 背包中每一个元素是不可重复放入。

动规五部曲:

1.确定dp数组以及下标的含义

dp[j]表示 背包总容量(所能装的总重量)是j,放进物品后,背的最大重量为dp[j]

那么如果背包容量为target, dp[target]就是装满 背包之后的重量,所以 当 dp[target] == target 的时候,背包就装满了

2.确定递推公式

01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

本题,相当于背包里放入数值,那么物品i的重量是nums[i],其价值也是nums[i]。

所以递推公式:dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);

3.dp数组如何初始化

从dp[j]的定义来看,首先dp[0]一定是0。

本题题目中 只包含正整数的非空数组,所以非0下标的元素初始化为0就可以了。

4.确定遍历顺序

这里使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历!

5.举例推导dp数组

dp[j]的数值一定是小于等于j的。

如果dp[j] == j 说明,集合中的子集总和正好可以凑成总和j。

用例1,输入[1,5,11,5] 为例,如图:

class Solution {public boolean canPartition(int[] nums) {if(nums == null || nums.length == 0) return false;int n = nums.length;int sum = 0;for(int num : nums) {sum += num;}//总和为奇数,不能平分if(sum % 2 != 0) return false;int target = sum / 2;int[] dp = new int[target + 1];for(int i = 0; i < n; i++) {for(int j = target; j >= nums[i]; j--) {//物品 i 的重量是 nums[i],其价值也是 nums[i]dp[j] = Math.max(dp[j], dp[j - nums[i]] + nums[i]);}//剪枝一下,每一次完成内层的for-loop,立即检查是否dp[target] == targetif(dp[target] == target)return true;}return dp[target] == target;}
}

时间复杂度:O(n^2);(嵌套for循环遍历n个数)

空间复杂度:O( n);(存储一个长度为n+1的dp数组)

二维数组版本

class Solution {public boolean canPartition(int[] nums) {int n = nums.length;//数组长度if (n < 2) {return false;}int sum = 0, maxNum = 0;for (int num : nums) {sum += num;maxNum = Math.max(maxNum, num);}if (sum % 2 != 0) {//和为偶数才能评分为两半return false;}int target = sum / 2;//目标值即背包容量//maxNum以外的所有元素之和一定小于 target因此不可能将数组分割成元素和相等的两个子集if (maxNum > target) {return false;}boolean[][] dp = new boolean[n][target + 1];//二维dp数组for (int i = 0; i < n; i++) {//初始化数组dp[i][0] = true;}dp[0][nums[0]] = true;for (int i = 1; i < n; i++) {//先物品int num = nums[i];for (int j = 1; j <= target; j++) {if (j >= num) {dp[i][j] = dp[i - 1][j] | dp[i - 1][j - num];} else {dp[i][j] = dp[i - 1][j];}}}return dp[n - 1][target];}
}

时间复杂度:O(n^2);(嵌套for循环遍历n个数)

空间复杂度:O( n^2);(dp二维数组)


 以上是个人的思考反思与总结,若只想根据系列题刷,参考卡哥的网址代码随想录算法官网

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/300032.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

智能感应门改造工程

今天记录一下物联网专业学的工程步骤及实施过程 智能感应门改造工程 1 规划设计1.1 项目设备清单1.2项目接线图 软件设计信号流 设备安装与调试工程函数 验收 1 规划设计 1.1 项目设备清单 1.2项目接线图 软件设计 信号流 设备安装与调试 工程函数 工程界面: using System; …

银行监管报送系统介绍(十五):金融审计平台

《“十四五”国家审计工作发展规划》中重点强调&#xff0c;金融审计&#xff1a;以防范化解重大风险、促进金融服务实体经济&#xff0c;推动深化金融供给侧结构性改革、建立安全高效的现代金融体系为目标&#xff0c;加强对金融监管部门、金融机构和金融市场运行的审计。 —…

蓝奏云直链获取在线解析网站源码

源码简介 蓝奏云直链获取在线解析网站源码 蓝奏云链接解析 本地API接口 支持有无密码和短期直链和永久直链&#xff0c;同时还可以显示文件名和大小。 这个解析器无需数据库即可搭建&#xff0c;API接口已经本地化&#xff0c;非常简单易用。 安装环境 php5.6 搭建教程 …

多功能echarts柱状图

数据结构: data = [{name: 类别1,value: 15,children: [{name: 项目1-1,value: 87,value2: 3.3,},{name: 项目1-2,value: 80,value2: 2.6,},{name: 项目1-3,value: 79,value2: 3.8,},]},{name: 类别2,value: 15,children: [{name: 项目2-1,value: 70,value2: 1.5,},{name: 项…

【数据结构】红黑树详解

目录 前言&#xff1a; 红黑树的概念&#xff1a; 红黑树的性质: 红黑树节点的定义&#xff1a; 红黑树的插入&#xff1a; 情况1&#xff1a;cur为红&#xff0c;p为红&#xff0c;g为黑&#xff0c;u存在且为红 情况2&#xff1a;cur为红&#xff0c;p为红&#xff0c…

【Java EE】关于Maven

文章目录 &#x1f38d;什么是Maven&#x1f334;为什么要学Maven&#x1f332;创建⼀个Maven项目&#x1f333;Maven核心功能&#x1f338;项目构建&#x1f338;依赖管理 &#x1f340;Maven Help插件&#x1f384;Maven 仓库&#x1f338;本地仓库&#x1f338;私服 ⭕总结 …

电商平台混战之下,天猫破解品牌增长奥秘

行业共识是追上风&#xff0c;才有好生意&#xff0c;但风很多时候不会只有一个方向。 4月2日&#xff0c;上海&#xff0c;TopTalk 2024天猫超级品牌私享会举行。这个活动已举办数年&#xff0c;每一年天猫都会发布新一年度的品牌经营策略&#xff0c;只是与往年不同的是&…

从零开始学起!全方位解析App压力测试的关键要点!

简介 Monkey 是 Google 提供的一个用于稳定性与压力测试的命令行工具 可以运行在模拟器或者实际设备中 它向系统发送伪随机的用户事件对软件进行稳定性与压力测试 为什么要用 Monkey Monkey 就是像猴子一样上蹿下跳地乱点 为了测试软件的稳定性&#xff0c;健壮性 随机点…

区间概率预测python|QR-CNN-BiLSTM+KDE分位数-卷积-双向长短期记忆神经网络-时间序列区间概率预测+核密度估计

区间预测python|QR-CNN-BiLSTMKDE分位数-卷积-双向长短期记忆神经网络-核密度估计-回归时间序列区间预测 模型输出展示&#xff1a; (图中是只设置了20次迭代的预测结果&#xff0c;宽度较宽&#xff0c;可自行修改迭代参数&#xff0c;获取更窄的预测区间&#xff09; 注&am…

2012年认证杯SPSSPRO杯数学建模D题(第一阶段)人机游戏中的数学模型全过程文档及程序

2012年认证杯SPSSPRO杯数学建模 D题 人机游戏中的数学模型 原题再现&#xff1a; 计算机游戏在社会和生活中享有特殊地位。游戏设计者主要考虑易学性、趣味性和界面友好性。趣味性是本质吸引力&#xff0c;使玩游戏者百玩不厌。网络游戏一般考虑如何搭建安全可靠、丰富多彩的…

汇编语言:寻址方式在结构化数据访问中的应用——计算人均收入

有一年多没有在CSDN上发博文了。人的工作重心总是有转移的&#xff0c;庆幸一直在做着有意义的事。   今天的内容&#xff0c;是为汇编语言课程更新一个实验项目。      本方案修改自王爽编《汇编语言》第&#xff14;版P172“实验7寻址方式在结构化数据访问中的应用” …

微软推出GPT-4 Turbo优先使用权:Copilot for Microsoft 365商业用户享受无限制对话及增强图像生成能力

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

【Apache Doris】周FAQ集锦:第 1 期

【Apache Doris】周FAQ集锦&#xff1a;第 1 期 SQL问题数据操作问题运维常见问题其它问题关于社区 欢迎查阅本周的 Apache Doris 社区 FAQ 栏目&#xff01; 在这个栏目中&#xff0c;每周将筛选社区反馈的热门问题和话题&#xff0c;重点回答并进行深入探讨。旨在为广大用户和…

【单】Unity _RPG项目中的问题

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 秩沅 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a; ⭐…

【Error】Uncaught TypeError: Cannot read properties of undefined (reading ‘get’)

报错原因&#xff1a; 返回值为undefined 解决&#xff1a; vue3可用&#xff1f;

echarts实现炫酷科技感的流光效果

前言&#xff1a; echarts实现炫酷科技感的流光效果 效果图&#xff1a; 实现步骤&#xff1a; 1、引入echarts,直接安装或者cdn引入 npm i echarts https://cdn.jsdelivr.net/npm/echarts5.4.3/dist/echarts.min.js 2、封装 option方法&#xff0c;第一个数据是折线数据&a…

面试:HashMap

目录 1、底层数据结构&#xff0c;1.7 与1.8有何不同? 2、为何要用红黑树&#xff0c;为何一上来不树化&#xff0c;树化阈值为何是8&#xff0c;何时会树化&#xff0c;何时会退化为链表? 3、索引如何计算? hashCode都有了&#xff0c;为何还要提供hash()方法?数组容量为…

AJAX —— 学习(三)(完结)

目录 一、jQuery 中的 AJAX &#xff08;一&#xff09;get 方法 1.语法介绍 2.结果实现 &#xff08;二&#xff09;post 方法 1.语法介绍 2.结果实现 &#xff08;三&#xff09;通用型的 AJAX 方法 1.语法介绍 2.结果实现 二、AJAX 工具库 axios &#xff08…

【XCPC笔记】2023 (ICPC) Jiangxi Provincial Contest——ABCHIJKL 做题记录

赛后gym练习及补题&#xff0c;gym链接&#xff1a;2023 (ICPC) Jiangxi Provincial Contest – Official Contest 补题顺序 L [Zhang Fei Threading Needles - Thick with Fine](https://codeforces.com/gym/104385/problem/L)题面解读参考代码 A [Drill Wood to Make Fire](h…

【数据结构与算法】力扣 24. 两两交换链表中的节点

题目描述 给你一个链表&#xff0c;两两交换其中相邻的节点&#xff0c;并返回交换后链表的头节点。你必须在不修改节点内部的值的情况下完成本题&#xff08;即&#xff0c;只能进行节点交换&#xff09;。 示例 1&#xff1a; 输入&#xff1a; head [1,2,3,4] 输出&#…