【动态规划-状态压缩dp】【蓝桥杯备考训练】:毕业旅行问题、蒙德里安的梦想、最短Hamilton路径、国际象棋、小国王【已更新完成】

目录

1、毕业旅行问题(今日头条2019笔试题)

2、蒙德里安的梦想(算法竞赛进阶指南)

3、最短Hamilton路径(《算法竞赛进阶指南》&模板)

4、国际象棋(第十二届蓝桥杯省赛第二场C++ A组/B组)

5、小国王(《信息学奥赛一本通》 SGU223)

1、毕业旅行问题(今日头条2019笔试题)

小明目前在做一份毕业旅行的规划。

打算从北京出发,分别去若干个城市,然后再回到北京,每个城市之间均乘坐高铁,且每个城市只去一次。

由于经费有限,小明希望能够通过合理的路线安排尽可能的省些路上的花销。

给定一组城市和每对城市之间的火车票的价钱,找到每个城市只访问一次并返回起点的最小车费花销。

注意:北京为 1 号城市。

输入格式

第一行包含一个正整数 n,表示城市个数。

接下来输入一个 n 行 n 列的矩阵,表示城市间的车票价钱。

输出格式

输出一个整数,表示最小车费花销。

数据范围

1<n≤20,包括北京
车票价格均不超过 1000 元。

输入样例:
4
0 2 6 5
2 0 4 4
6 4 0 2
5 4 2 0
输出样例:
13
说明

共 4 个城市,城市 1 和城市 1 的车费为0,城市 1 和城市 2 之间的车费为 2,城市 1 和城市 3 之间的车费为 6,城市 1 和城市 4 之间的车费为 5,以此类推。

假设任意两个城市之间均有单程票可买,且价格均在 1000 元以内,无需考虑极端情况。

思路:

经典的状态压缩求最短路问题,每个城市只有两个状态:去过或者没去过,去过则为1,没去过则为0

代码:
#include<bits/stdc++.h>using namespace std;int n; const int N=20,M=1<<20;int w[N][N];int f[M][N];//M表示状态的压缩,N代表最后到哪一个城市了 int main()
{cin>>n;memset(f,0x3f,sizeof f);//每个状态为正无穷,表示还没取min for(int i=0;i<n;i++){for(int j=0;j<n;j++){scanf("%d",&w[i][j]);}}f[1][0]=0;//初始的状态(需要费用为0) //从1开始表示北京已经去过了 (二进制表示为000.....1) for(int i=1;i<1<<n;i++)//(1<<n)-1就是111....1//例如n==5的时候,1<<5就是100000,减去1就是11111 {for(int j=0;j<n;j++)//北京开始 {//这个状态下(终点为j,状态为i) if(i>>j&1)//(i>>j表示要到第j个城市,这个状态的j位就要是1(否则到不了)) {for(int k=0;k<n;k++)//从第k个城市转移过来{if((i-(1<<j))>>k&1)//i中减去第j个城市后还包含k//说明这个状态到过k,可以从k转移过来f[i][j]=min(f[i][j],f[i-(1<<j)][k]+w[k][j]); } }}}int res=1<<31-1;for(int i=1;i<n;i++){res=min(res,f[(1<<n)-1][i]+w[i][0]);}cout<<res;return 0;
} 

2、蒙德里安的梦想(算法竞赛进阶指南)

求把 N×M 的棋盘分割成若干个 1×2 的长方形,有多少种方案。

例如当 N=2,M=4 时,共有 5 种方案。当 N=2,M=3,时,共有 3 种方案。

如下图所示:

2411_1.jpg

输入格式

输入包含多组测试用例。

每组测试用例占一行,包含两个整数 N 和 M。

当输入用例 N=0,M=0 时,表示输入终止,且该用例无需处理。

输出格式

每个测试用例输出一个结果,每个结果占一行。

数据范围

1≤N,M≤11

输入样例:
1 2
1 3
1 4
2 2
2 3
2 4
2 11
4 11
0 0
输出样例:
1
0
1
2
3
5
144
51205
思路:

先放置完横着放的,之后竖着放的方法就是固定的

一个重要的任务就是判断放置的方法是否合法

基本框架:

预处理:

dp:

代码:
#include<bits/stdc++.h>using namespace std;const int N=12;
const int M=1<<11;int n,m;long long  f[N][M];//第i列的状态为M ,j表示出头的方格数量 bool st[M];//用来表示某一种状态是否合法 int main()
{while(cin>>n>>m,n || m){memset(f,0,sizeof f);//开始预处理for(int i=0;i<1<<n;i++)//枚举每一种状态 {int cnt=0;//记录连续的空格数量 st[i]=true; for(int j=0;j<n;j++){if(i>>j&1)//这个位置不是空格 {if(cnt&1)st[i]=false;//这个位置之前的连续空格数量是奇数,不合法 cnt=0;}else cnt++;}if(cnt&1)st[i]=false; }f[0][0]=1;//第0列没有上一列,所以没有戳出来的//小方块里什么都没有放,只有这一种状态 for(int i=1;i<=m;i++)//枚举列 {for(int j=0;j<1<<n;j++)//枚举这一列的状态 {for(int k=0;k<1<<n;k++)//枚举上一列的状态 {if(((j&k)==0) && st[j|k])//(k列加上j列向后伸的格子后要合法){f[i][j]+=f[i-1][k];}}}} cout<<f[m][0]<<endl;}return 0;
}

3、最短Hamilton路径(《算法竞赛进阶指南》&模板)

给定一张 n 个点的带权无向图,点从 0∼n−1 标号,求起点 0 到终点 n−1 的最短 Hamilton 路径。

Hamilton 路径的定义是从 0到 n−1 不重不漏地经过每个点恰好一次。

输入格式

第一行输入整数 n。

接下来 n 行每行 n 个整数,其中第 i 行第 j 个整数表示点 i 到 j 的距离(记为 a[i,j])。

对于任意的 x,y,z,数据保证 a[x,x]=0,a[x,y]=a[y,x],并且 a[x,y]+a[y,z]≥a[x,z]。

输出格式

输出一个整数,表示最短 Hamilton 路径的长度。

数据范围

1≤n≤20
0≤a[i,j]≤1e7

输入样例:
5
0 2 4 5 1
2 0 6 5 3
4 6 0 8 3
5 5 8 0 5
1 3 3 5 0
输出样例:
18
思路:

状态压缩dp模板

代码:
#include<bits/stdc++.h>using namespace std;const int N=20,M=1<<20;int n;int w[N][N];int f[M][N];int main()
{int n;cin>>n;for(int i=0;i<n;i++){for(int j=0;j<n;j++){scanf("%d",&w[i][j]);}}//状态压缩dp memset(f,0x3f,sizeof f);//初始为0f[1][0]=0;//i==1表示第一个点已经走了,j==0表示目前在第一个点 //从0000.。。1开始 for(int i=1;i<1<<n;i++){//从起点0开始 for(int j=0;j<n;j++){//只有i包含j这个点,才能从i这个状态转移到终点为j的状态 if(i>>j&1){//f[i][k]---k-jfor(int k=0;k<n;k++){if((i-(1<<j))>>k&1){//(用不包含j点的状态来转移)f[i][j]=min(f[i][j],f[i-(1<<j)][k]+w[k][j]);}}}}}int res=1<<31-1;//for(int i=1;i<n;i++)//{//	res=min(res,f[(1<<n)-1][i]);//}//cout<<res<<endl;//标明了终点是n-1,所以说直接选终点是n-1的情况 cout<<f[(1<<n)-1][n-1];return 0;
}

4、国际象棋(第十二届蓝桥杯省赛第二场C++ A组/B组)

众所周知,“八皇后” 问题是求解在国际象棋棋盘上摆放 8 个皇后,使得两两之间互不攻击的方案数。

已经学习了很多算法的小蓝觉得 “八皇后” 问题太简单了,意犹未尽。作为一个国际象棋迷,他想研究在 N×M 的棋盘上,摆放 K 个马,使得两两之间互不攻击有多少种摆放方案。

由于方案数可能很大,只需计算答案除以 1000000007 (即 1e9+7) 的余数。

如下图所示,国际象棋中的马摆放在棋盘的方格内,走 “日” 字,位于 (x,y)格的马(可以攻击 (x+1,y+2)、(x+1,y−2)、(x−1,y+2)、(x−1,y−2)、(x+2,y+1)、(x+2,y−1)、(x−2,y+1) 和 (x−2,y−1) 共 8 个格子。

QQ截图20210512104039.png

输入格式

输入一行包含三个正整数 N,M,K分别表示棋盘的行数、列数和马的个数。

输出格式

输出一个整数,表示摆放的方案数除以 1000000007(即 1e9+7) 的余数。

数据范围

对于 5%5% 的评测用例,K=1;
对于另外 10%10% 的评测用例,K=2;
对于另外 10%10% 的评测用例,N=1;
对于另外 20%20% 的评测用例,N,M≤6,K≤5;
对于另外 25%25% 的评测用例,N≤3,M≤20,K≤12;
对于所有评测用例,1≤N≤6,1≤M≤100,1≤K≤20。

输入样例1:
1 2 1
输出样例1:
2
输入样例2:
4 4 3
输出样例2:
276
输入样例3:
3 20 12
输出样例3:
914051446
思路:
枚举思路:

代码:
#include<bits/stdc++.h>using namespace std;
typedef long long LL;
const int N = 110,M=6,MOD=1e9+7;
int f[N][1<<M][1<<M][21];
int n,m,k;
int get_count(int x)//返回x的二进制有多少个1
{int res=0;while(x){res++;x-=(x&-x);}return res;
}
int main()
{scanf("%d%d%d",&n,&m,&k);f[0][0][0][0]=1;//状态初始化:第0行时,状态只能是0,只能是放0个马//5层循环比较乱,把图画出来,照着图写for(int i=1;i<=m;i++){for(int c=0;c<1<<n;c++){for(int a=0;a<1<<n;a++){if((c&(a<<2))||(a&(c<<2))) continue;for(int b=0;b<1<<n;b++){if(b&(a<<2)||a&(b<<2)) continue;if(b&(c<<1)||c&(b<<1)) continue;int t=get_count(b);for(int j=t;j<=k;j++)f[i][a][b][j]=(f[i][a][b][j]+f[i-1][c][a][j-t])%MOD;//对应集合划分,枚举j,f[i-1][c][a][j-t]都能到达f[i][a][b][j]}}}}int res=0;for(int a=0;a<1<<n;a++){for(int b=0;b<1<<n;b++){res=(res+f[m][a][b][k])%MOD;//m,k固定,a,b随意}}printf("%d",res);return 0;
}

5、小国王(《信息学奥赛一本通》 SGU223)

在 n×n 的棋盘上放 k 个国王,国王可攻击相邻的 8 个格子,求使它们无法互相攻击的方案总数。

输入格式

共一行,包含两个整数 n 和 k。

输出格式

共一行,表示方案总数,若不能够放置则输出0。

数据范围

1≤n≤10,
0≤k≤n**2

输入样例:
3 2
输出样例:
16
思路:

代码:
#include<bits/stdc++.h>using namespace std;typedef long long LL;const int N = 11, M = 1 << N, C = N * N;int n, m, K;
LL f[N][C][M];
int cnt[M];
vector<int> legal_state;
vector<int> state_trans[M];bool check(int state)
{return !(state & state >> 1);
}
int count(int state)
{int res=0;while(state){res++;state-=state & -state;}return res;
}
int main()
{cin >> n >> K;//预处理所有合法状态for (int st = 0; st < 1 << n; ++ st)//检查当前状态是否合法if (check(st))legal_state.push_back(st),cnt[st] = count(st);m = legal_state.size();//预处理所有合法状态的合法转移for (auto cur_st: legal_state)for (auto to_st: legal_state)if (!(cur_st & to_st) && check(cur_st | to_st))//上下不相邻且纵坐标也不相邻state_trans[cur_st].push_back(to_st);//动态规划f[0][0][0] = 1;for (int i = 1; i <= n; ++ i)for (int j = 0; j <= K; ++ j)for (auto &state: legal_state)for (auto &pre_st: state_trans[state])if (j - cnt[state] >= 0)f[i][j][state] += f[i - 1][j - cnt[state]][pre_st];//统计目标状态的所有方案数LL res = 0;for (auto state: legal_state) res += f[n][K][state];cout << res << endl;return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/301074.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vue+springboot多角色登录

①前端编写 将Homeview修改为manager Manager&#xff1a; <template><div><el-container><!-- 侧边栏 --><el-aside :width"asideWidth" style"min-height: 100vh; background-color: #001529"><div style"h…

Jetpack Compose -> 状态机制的背后秘密

前言 上一章我们讲解了 Jetpack Compose 的无状态、状态提升、单向数据流 本章我们讲解下状态机制的背后秘密 List 前面我们讲过&#xff0c;通过 by mustableStateOf() 就可以被 Compose 自动订阅了&#xff1b;我们前面是通过 String 类型进行的自动订阅&#xff0c;那么换成…

C语言 | Leetcode C语言题解之第13题罗马数字转整数

题解&#xff1a; 题解&#xff1a; int romanToInt(char* s) {int symbolValues[26];symbolValues[I - A] 1;symbolValues[V - A] 5;symbolValues[X - A] 10;symbolValues[L - A] 50;symbolValues[C - A] 100;symbolValues[D - A] 500;symbolValues[M - A] 1000;int a…

基于Spring boot+Vue的业余排球俱乐部会员管理系统

5 系统功能模块的具体实现 5.1超级会员角色 5.1.1 登录 超级管理员登录通过用户名和密码去数据库查询用户表&#xff0c;该名称是否在用户表中存在&#xff0c;如果存在&#xff0c;则通过用户名和密码查询密码是否正确&#xff0c;然后吧用户的信息存在jwt的负载里&#xf…

【学习】渗透测试有哪些重要性

随着信息技术的迅猛发展&#xff0c;网络安全问题日益凸显。渗透测试作为网络安全防御的重要手段之一&#xff0c;旨在模拟黑客攻击&#xff0c;发现并修复潜在的安全漏洞&#xff0c;提高网络系统的安全性。本文将介绍渗透测试的概念、重要性、实施步骤及实践案例&#xff0c;…

PPT 操作

版式 PPT中&#xff0c;巧妙使用母版&#xff0c;可以提高效率。 双击母版&#xff0c;选择其中一个版式&#xff0c;插入装饰符号。 然后选择关闭。 这个时候&#xff0c;在该版式下的所有页面&#xff0c;就会出现新加入的符号。不在该版式下的页面&#xff0c;不会出现新加…

springboot 反射调用ServiceImpl时报错:java.lang.NullPointerExceptio、,mapper为null【解决方法】

springboot 反射调用ServiceImpl时报错&#xff1a;java.lang.NullPointerException、mapper为null【解决方法】 问题描述问题分析解决方案创建SpringBootBeanUtil编写调用方法 executeMethod调用 总结 问题描述 在使用Spring Boot时&#xff0c;我们希望能够通过反射动态调用…

0基础安装配置Linux-ubuntu环境

Vmtools的安装参见 0基础教你安装VM 17PRO-直接就是专业许可证版_vm17许可证-CSDN博客 在vmtools中安装ubuntu 等待安装 这时候发现没有继续按钮&#xff0c;我们关闭这个界面&#xff0c;进入系统中&#xff0c;先更改分辨率 点击这个三角&#xff0c;因为还么有安装成功&am…

初识ES(ES的基本概念、倒排索引、索引和文档的CRUD)

1、ES是什么&#xff1f; 一个开源的分布式搜索引擎&#xff0c;可以用来实现搜索、日志统计、分析、系统监控等功能。ES的底层是基于Lucene实现的。 Lucene是一个Java语言的搜索引擎类库。 什么是elastic stack&#xff08;ELK&#xff09;&#xff1f; elasticsearch。存储、…

JMeter+Ant+Jenkins构建接口报告(无人驾驶版)

展示结果&#xff1a; uc浏览器打开测试报告&#xff0c;绿色显示脚本结果 搭建操作步骤如下 1.jemter写好脚本 2.下载并配置ant环境变量&#xff1a;加上activation.jar、commons-lang3-3.8.1.jar、mail.jar 这3个包 mail.jar需要引用到jmeter 3.下载安装Jenkins 并进行构建…

第五、六章

函数 三要素 &#xff08;1&#xff09;是组织好的 &#xff08;2&#xff09;可重复使用的 &#xff08;3&#xff09;实现特定功能的代码段 定义格式 def 函数名(传入参数)&#xff1a;函数体return 返回值 注意&#xff1a; &#xff08;1&#xff09;参数不需要&…

chrome 浏览器 有自带的自动字幕功能,支持英文,控制您的音乐、视频等媒体内容

chrome 浏览器 有自带的自动字幕功能&#xff0c;支持英文&#xff0c;控制您的音乐、视频等媒体内容

大模型新漏洞!Anthropic警告:新式“多轮越狱”攻破AI防线,或祸起长文本

如何让一个AI回答一个它本不应该作答的问题&#xff1f; 有很多这种所谓的“越狱”技术&#xff0c;而Anthropic的研究人员最近发现了一种新方法&#xff1a;如果首先用几十个危害性较小的问题对大型语言模型&#xff08;LLM&#xff09;进行预热&#xff0c;就能诱使其告诉你…

827. 最大人工岛

827. 最大人工岛 原题链接&#xff1a;完成情况&#xff1a;解题思路&#xff1a;参考代码&#xff1a;错误经验吸取 原题链接&#xff1a; 827. 最大人工岛 https://leetcode.cn/problems/making-a-large-island/description/ 完成情况&#xff1a; 解题思路&#xff1a; 这…

fastlio2 保存每帧的点云和每帧的里程计为单独的文件做后端回环优化和手动回环优化

为了 提供数据做后端回环优化和手动回环优化,需要保存每帧的点云和每帧的里程计为单独的文件,并且需要保存的名字为ros时间戳。 效果很好,比我自己写的手动回环模块好用 // This is an advanced implementation of the algorithm described in the // following paper: /…

Java | Leetcode Java题解之第13题罗马数字转整数

题目&#xff1a; 题解&#xff1a; class Solution {Map<Character, Integer> symbolValues new HashMap<Character, Integer>() {{put(I, 1);put(V, 5);put(X, 10);put(L, 50);put(C, 100);put(D, 500);put(M, 1000);}};public int romanToInt(String s) {int …

Godot插值、贝塞尔曲线和Astar寻路

一、插值 线性插值是采用一次多项式上进行的插值计算&#xff0c;任意给定两个值A和B&#xff0c;那么在A和B之间的任意值可以定义为&#xff1a;P(t) A * (1 - t) B * t&#xff0c;0 < t < 1。 数学中用于线性拟合&#xff0c;游戏应用可以做出跟随效果&#xff08;…

Rust语言入门第一篇-环境搭建

Rust语言入门第一篇 Rust官网 一&#xff0c;环境搭建 1、C开发环境配置 Rust 语言的底层是依赖于 C/C 编译器的。在安装 Rust 编译器时&#xff0c;通常会自动安装所需的 C/C 编译环境&#xff0c;以便 Rust 能够生成可执行文件或库。因此&#xff0c;在安装 Rust 之前&…

基于单片机手机屏蔽器系统仿真设计

**单片机设计介绍&#xff0c;基于单片机手机屏蔽器系统仿真设计 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于单片机手机屏蔽器系统的仿真设计主要涉及到手机信号屏蔽的原理、单片机控制逻辑设计、仿真软件的选择与使用以…

python(使用循环显示四种模式)

代码&#xff1a; # 模式A for i in range(1, 6):for j in range(1, 6):if i j:print(i, end"")else:print(" ", end"")print()# 模式B for i in range(1, 6):for j in range(1, 6):if i j 7:print(j, end"")else:print(" &q…