学习记录14-运算放大器2

目录

前言

一、理想放大器

二、虚断

二、虚短

虚短的两个使用条件

1.虚短概念

2.如果我们将运放的同相端和反相端颠倒会怎样呢?

总结

前言

主要讲述运算放大器的虚短虚断


一、理想放大器

如果没有基础或只是想简单了解,可以看我前一篇文章:

学习记录7-运算放大器1icon-default.png?t=N7T8https://mp.csdn.net/mp_blog/creation/editor/135329400

在说虚短虚断前先说一下理想放大器的概念:

1、增益无穷大

增益无穷大好理解,因为一般运放的增益就是很大的

2、输入阻抗无穷大

理想运放的输入阻抗无穷大,实际运放的阻抗是MΩ级别的

3、输出阻抗为0

理想运放的输出阻抗可以看成是0。实际可能有几十到上百Ω。

可能有人会认为,这阻抗也不是很低啊,咋就能忽略呢?

这个其实还是看应用,如果运放后端的电路等效输入阻抗比较高,那么自然就可以忽略的。如果负载的输入阻抗本身也就只有几十或百Ω,那么自然就不能完全忽略。

二、虚断

虚断”相对于“虚短”来说,相对简单点。

前面说理想运放的输入阻抗无穷大,解读一下就是说,如果给运放的输入端加个电压,那么流入流出运放的输入管脚的电流就是0,阻抗无穷大嘛,自然没有电流,那就相当于是开路,也就是断路。但是呢,这跟完全断路又不一样,因为运放还是会感应输入端的电压的,所以也不是真的断路,因此,称为“虚断”。

可以看到,“虚断”跟把运放接成什么样的电路没有关系,只要是个集成运放,都可以运用虚断来分析(严格来说,实际运放输入端还是有电流的,只是相当小。如果外部电阻实在太大,导致电阻电流接近或者超过运放的输入端微小电流,“虚断”还是会失效的)。

相对于“虚断”的基本无门槛使用,运放的“虚短”使用是有门槛的。

二、虚短

虚短的两个使用条件

1、电路为负反馈电路

2、运放工作在线性放大区

1.虚短概念

要理解这两点,我们只需要知道“虚短”是咋来的就好了。

首先,虚短的意思是什么呢?

我们知道,运放有两个输入端,同相端和反相端,“虚短”说的就是同相端和反相端的电压一样,就跟短路一样,那它是如何做到这一点的呢?我们前面说的理想运放的三个特点也没有这个呀?

下面就以下图的电路为例子,看看为什么最终是u+ = u-的?

假设刚开始时,各处电压为0,突然u1瞬间从0变为2.5V,因为uo一开始为0V,根据“虚断”,u-没有电流流入放大器,所以u-为uo在R1和R2上的分压,依然为0V。

当u+瞬间为2.5V后,u-为0V,u+>u-,放大器会朝着电压增大的方向进行放大,即uo电压会开始升高

当uo增大到1V,u-依然为uo的在R1和R2上的分压,即为0.5V。此时u+=2.5V,u-=0.5V,u+>u-,放大器将电压继续正向放大,因此uo继续增大。

那问题来了,uo增大到多少会停止呢?很容易想到,只要u+>u-,因为我们现在讨论的是理想运放,放大倍数为无穷大,所以uo就会增大(放大器是这样一个装置,它总是将输入电压放大Auo倍,即总满足:Uo=Au*(u+ - u-))。

只有当uo增加到5V时,u-电压为uo在R1和R2的分压正好是2.5V,u-等于u+,此时放大器达到平衡,不再放大,即稳定态就是现在了。

那为什么稳定态一定是u- = u+,u- > u+不行吗?

我们也可以假设下,万一uo一不小心超过了5V,那么u-就会大于2.5V,u-会大于u+,此时放大器会将输出电压反方向放大,也就是减小,最终电压还是会向5V逼近。

因此,不论电路初始状态电压是怎么样的,最终输出都会稳定在5V,而且u+ = u-,因为一旦u+不等于u-,那么在无穷大的放大倍数下,输出必然会变化,最终还是会导致u+ = u-。

前面这些有点绕,我们仔细想一下,逻辑是不是这样:当u+不等于u-时,输出就会变化,这个变化又会送回到输入端,图中为u-,进而导致u+与u-的差值变小,差值变小,意味着输入信号变小了(运放的输入是u+ - u-,也就是差值)。

也就是说,输出信号将自己通过电阻R2和R1又送到输入端,降低了输入信号,这不就是负反馈吗?

总之,对于上面这个负反馈电路,最终的结果就是:u+ = u- 

这就是虚短:“虚短”说的就是同相端和反相端的电压一样,就跟短路一样。

2.如果我们将运放的同相端和反相端颠倒会怎样呢?

同样的,当输入突变成2.5V,因为uo初始还是0V,那么u+也是0V,此时有u+ < u-,因此,输出要减小,变成负的。当输出减小时,根据分压关系,u+也要减小,也是负的,也就说u+比u-小得更多了,即u+与u-的差值更大了。差值更大,意味着输入信号变大了(运放的输入是(u+) -( u-),也就是差值)。

也就是说,输出信号将自己通过电阻R2和R1又送到输入端,加强了输入信号,这不就是正反馈嘛。

由此得出第一条件:电路为负反馈电路。

很容易想到,最终的稳态就是uo能输出多低就是多低,如果是单电源供电,那么uo=0V,此时u+=0V,而u-=2.5V,显然,u+不等于u-,也就是说不满足“虚短

第二条件:运放工作在线性放大区

以前面的负反馈为例子,当输入2.5V时,输出就是5V了,但是假如供电只有3.3V呢?

显然,输出超不过5V,此时放大器工作在饱和区,顶天了放大器也只能放大到3.3V,因此输出最终达不到5V,那么u-自然也到不了2.5V了,此时u+也就不等于u-了,也就不满足虚短了。

所以说,满足虚短还需要放大器工作在线性放大区。


为了便于理解,我又写了例题一例:

学习记录15-运算放大器例题1icon-default.png?t=N7T8https://mp.csdn.net/mp_blog/creation/editor/137510611


总结

其实运放可以看成一个这样的东西,它总能将u+和u-的差值放大Auo倍。想想,是不是这么个玩意儿,其实它自己也不知道外面到底接了什么电路,反正就将u+与u-的差值,放大Auo倍,然后送到输出uo。

因此,天然就有了这么个公式:

uo=(u+ - u-)*Auo

变换一下,得:

u+ - u- =uo/Auo

uo是一个有限的值,如果3.3V供电,uo不会超过3.3,就假定uo=3.3V吧,假如Auo是一百万倍,Auo=1000000,那么:

u+ - u- = 3.3V/1000000 = 3.3uV

可以看到,u+与u-的电压差值只有3.3uV,这是相当小的,我们在分析电路电压的时候,自然可以忽略这个压差,把它们看成是相等的了,也就是“虚短”。同时,我们也可以看到,运放的开环增益Auo越大,那么u+和u-的越接近,更能看成是“虚短”。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/302567.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Jackson 2.x 系列【15】序列化器 JsonSerializer

有道无术&#xff0c;术尚可求&#xff0c;有术无道&#xff0c;止于术。 本系列Jackson 版本 2.17.0 源码地址&#xff1a;https://gitee.com/pearl-organization/study-jaskson-demo 文章目录 1. 概述2. 方法2.1 构造2.2 序列化2.3 其他 3. 实现类3.1 StdSerializer3.1.1 源…

vue3学习笔记(pinia)

defineModel&#xff1a;快速实现组件的双向绑定 pinia&#xff1a;在仓库中提供数据和使用数据 创建store文件夹&#xff0c;在里面创建counter.js&#xff0c;以提供数据&#xff0c;注意需要return 和 export&#xff0c;export的是一个函数。 import { defineStore } from…

智慧驿站式的“智慧公厕”,给城市新基建带来新变化

随着智慧城市建设的推进&#xff0c;智慧驿站作为一种多功能城市部件&#xff0c;正逐渐在城市中崭露头角。这些智慧驿站集合了智慧公厕的管理功能&#xff0c;为城市的新基建带来了全新的变革。本文以智慧驿站智慧公厕源头实力厂家广州中期科技有限公司&#xff0c;大量精品案…

蓝桥杯第十三届省赛C++B组(未完)

目录 刷题统计 修剪灌木 X进制减法 【前缀和双指针】统计子矩阵 【DP】积木画 【图DFS】扫雷 李白打酒加强版 DFS (通过64%&#xff0c;ACwing 3/11&#xff09;; DFS(AC) DP&#xff08;AC&#xff09; 砍竹子(X) 刷题统计 题目描述 小明决定从下周一开始努力刷题准…

基于JAVA的汽车售票网站论文

摘 要 互联网发展至今&#xff0c;无论是其理论还是技术都已经成熟&#xff0c;而且它广泛参与在社会中的方方面面。它让信息都可以通过网络传播&#xff0c;搭配信息管理工具可以很好地为人们提供服务。针对汽车售票信息管理混乱&#xff0c;出错率高&#xff0c;信息安全性差…

ChatGPT与生成式AI:教育领域内新的浪潮与挑战

随着ChatGPT和其他生成式AI技术&#xff0c;如GPT-3.5、GPT-4的出现&#xff0c;我们正见证教育领域一场前所未有的变革浪潮。这些技术不仅推动了教育方式的进步&#xff0c;也为学习者带来了全新的机遇和挑战。 NO.1教育变革的新浪潮 生成式AI技术&#xff0c;特别是ChatGPT&…

使用SquareLine Studio创建LVGL项目到IMX6uLL平台

文章目录 前言一、SquareLine Studio是什么&#xff1f;二、下载安装三、工程配置四、交叉编译 前言 遇到的问题&#xff1a;#error LV_COLOR_DEPTH should be 16bit to match SquareLine Studios settings&#xff0c;解决方法见# 四、交叉编译 一、SquareLine Studio是什么…

04 Python进阶:MySQL-PyMySQL

什么是 PyMySQL&#xff1f; PyMySQL 是一个用于 Python 的纯 Python MySQL 客户端库&#xff0c;提供了与 MySQL 数据库进行交互的功能。PyMySQL 允许 Python 开发人员连接到 MySQL 数据库服务器&#xff0c;并执行诸如查询、插入、更新和删除等数据库操作。 以下是 PyMySQL …

超图SuperMap-Cesium,地形图层,可以渲染一个或多个地形(地形可缓存DEM,TIN方式),webGL代码开发(2024-04-08)

1、缓存文件类型TIN格式&#xff0c;TIN的地形sct只能加一个 const viewer new Cesium.Viewer(cesiumContainer); viewer.terrainProvider new Cesium.CesiumTerrainProvider({isSct: true, // 是否为iServer发布的TIN地形服务,stk地形设置为falserequestWaterMask : true,…

【前沿模型解析】潜在扩散模型 2-2 | 手撕感知图像压缩基础块上下sample块

文章目录 1 DownSample下采样部分1.1 两种实现方式1.2 代码实现 2 UpSample上采样部分2.1 代码实现 1 DownSample下采样部分 1.1 两种实现方式 下采样&#xff0c;即改变特征图的尺寸 下采样的话源码实现了两种方式 方式一&#xff1a;是通过卷积实现下采样&#xff0c;我们…

谈谈什么是 Redis

&#x1f525;博客主页&#xff1a;fly in the sky - CSDN博客 &#x1f680;欢迎各位&#xff1a;点赞&#x1f44d;收藏⭐️留言✍️&#x1f680; &#x1f386;慢品人间烟火色,闲观万事岁月长&#x1f386; &#x1f4d6;希望我写的博客对你有所帮助,如有不足,请指正&#…

Linux(05) Debian 系统修改主机名

查看主机名 方法1&#xff1a;hostname hostname 方法2&#xff1a;cat etc/hostname cat /etc/hostname 如果在创建Linux系统的时候忘记修改主机名&#xff0c;可以采用以下的方式来修改主机名称。 修改主机名 注意&#xff0c;在linux中下划线“_”可能是无效的字符&…

软件测试学习之MySQL学习笔记(完结)

目录 1. 数据库**** 1.1. 概念**** 1.2. 分类**** 1.2.1. 关系型数据库**** 1.2.1.1. SQL**** 1.2.2. 安装**** 1.2.2.1. Navicat**** 2. SQL语句**** 2.1. 常用数据类型**** 2.2. 数据库**** 2.3. 表**** 2.3.1. 字段约束**** 2.4. 数据**** 2.4.1. 增 insert**…

JavaSE:图书管理系统

目录 一、前言 二、内容需求 三、类的设计 &#xff08;一&#xff09;图书类 1.Book 类 2.BookList 类 &#xff08;二&#xff09;操作类 1.添加图书AddOperation类 2.借阅图书BorrowOperation类 3.删除图书DelOperation类 4.显示图书ShowOperation类 5.退出系统Ex…

ChromeOS 中自启动 Fcitx5 和托盘 stalonetray

ChromeOS 更新的飞快&#xff0c;旧文章的方法也老是不好用&#xff0c;找遍了也没找到很好的可以开机自启动 Linux VM 和输入法、托盘的方法。 研究了一下&#xff08;不&#xff0c;是很久&#xff09;&#xff0c;终于找到个丑陋的实现。 方法基于 ChromeOS 123.0.6312.94…

linux 开机自启动

方式1—依赖桌面启动&#xff0c;一般适用与UI相关程序 1、创建运行脚本&#xff0c;以管理员放方式运行&#xff0c;加入密码 vim runapp.sh #!/bin/bash cd /home/nvidia/test echo ‘passcode’ | sudo -S ./testapp 2、终端输入 gnome-session-properties 3、在com…

os.listdir()bug总结

今天测试出一个神奇的bug&#xff0c;算是教训吧&#xff0c;找了两天不知道问题在哪&#xff0c;最后才发现问题出现在这 原始文件夹显示 os.listdir()结果乱序 import os base_path "./file/"files os.listdir(base_path)print(files)问题原因 解决办法(排序) …

即插即用篇 | YOLOv8引入Haar小波下采样 | 一种简单而有效的语义分割下采样模块

本改进已集成到 YOLOv8-Magic 框架。 下采样操作如最大池化或步幅卷积在卷积神经网络(CNNs)中被广泛应用,用于聚合局部特征、扩大感受野并减少计算负担。然而,对于语义分割任务,对局部邻域的特征进行池化可能导致重要的空间信息丢失,这有助于逐像素预测。为了解决这个问题…

【进阶六】Python实现SDVRPTW常见求解算法——遗传算法(GA)

基于python语言&#xff0c;采用经典蚁群算法&#xff08;ACO&#xff09;对 带硬时间窗的需求拆分车辆路径规划问题&#xff08;SDVRPTW&#xff09; 进行求解。 目录 往期优质资源1. 适用场景2. 代码调整2.1 需求拆分2.2 需求拆分后的服务时长取值问题 3. 求解结果4. 代码片段…

智慧水库解决方案(打造水库智慧监测体系)

​作为一名水利自动化系统集成商,最近我司接手了一个智慧水库建设项目。这个项目位于一座山区的大型水库,目的是对其进行现代化、智能化改造,提升供水、防洪等管理水平。&#xff08;key-iot.com.cn&#xff09; 在方案设计之初,我们组织了现场勘测,全面了解水库的实际情况。这…