SCI一区 | Matlab实现OOA-TCN-BiGRU-Attention鱼鹰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测

SCI一区 | Matlab实现OOA-TCN-BiGRU-Attention鱼鹰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测

目录

    • SCI一区 | Matlab实现OOA-TCN-BiGRU-Attention鱼鹰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

1.基于OOA-TCN-BiGRU-Attention鱼鹰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测,要求Matlab2023版以上,自注意力机制,一键单头注意力机制替换成多头注意力机制;
2.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;
3.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价;
5.优化学习率,神经元个数,注意力机制的键值, 正则化参数。

模型描述

多变量时间序列预测是一项重要的任务,它涉及对具有多个变量的时间序列数据进行预测。为了改进这一任务的预测性能,研究者们提出了许多不同的模型和算法。其中一种结合了时间卷积网络(Temporal Convolutional Network,TCN)、双向门控循环单元(Bidirectional Gated Recurrent Unit,BiGRU)和注意力机制(Attention)的模型。

该算法的核心思想是利用时间卷积网络来捕捉时间序列数据中的长期依赖关系,通过双向门控循环单元来建模序列数据的上下文信息,并通过注意力机制来自适应地加权不同变量的重要性。

步骤如下:

时间卷积网络(TCN):使用一维卷积层来提取时间序列数据中的局部和全局特征。时间卷积能够通过不同大小的卷积核捕捉不同长度的时间依赖关系,从而更好地建模序列中的长期依赖。

双向门控循环单元(BiGRU):将TCN的输出作为输入,使用双向门控循环单元来编码序列数据的上下文信息。双向GRU能够同时考虑序列数据的过去和未来信息,提高了对序列中重要特征的捕捉能力。

注意力机制(Attention):通过引入注意力机制,模型可以自适应地关注输入序列中不同变量的重要性。注意力机制可以根据序列数据的不同特征,动态地调整它们在预测任务中的权重,从而提高模型的表达能力和预测准确性。

输出层:最后,根据模型的具体任务需求,可以使用不同的输出层结构,如全连接层来进行最终的预测。

通过将时间卷积网络、双向门控循环单元和注意力机制相结合,OOA-TCN-BiGRU-Attention鲸鱼算法能够更好地建模多变量时间序列数据的复杂关系,并提高预测性能。然而,需要注意的是,该算法的具体实现可能会根据具体问题和数据集的特点进行适当的调整和优化。

程序设计

  • 完整源码和数据获取方式私信博主回复Matlab实现OOA-TCN-BiGRU-Attention鱼鹰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测

%% %% 算法优化TCN-BiGRU-Attention,实现多变量输入单步预测
clc;
clear 
close all%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行layer = sequenceInputLayer(f_,Normalization="rescale-symmetric",Name="input");
lgraph = layerGraph(layer);outputName = layer.Name;for i = 1:numBlocksdilationFactor = 2^(i-1);layers = [convolution1dLayer(filterSize,numFilters,DilationFactor=dilationFactor,Padding="causal",Name="conv1_"+i)layerNormalizationLayerdropoutLayer(dropoutFactor) % spatialDropoutLayer(dropoutFactor)convolution1dLayer(filterSize,numFilters,DilationFactor=dilationFactor,Padding="causal")layerNormalizationLayerreluLayerdropoutLayer(dropoutFactor) additionLayer(2,Name="add_"+i)];% Add and connect layers.lgraph = addLayers(lgraph,layers);lgraph = connectLayers(lgraph,outputName,"conv1_"+i);% Skip connection.if i == 1% Include convolution in first skip connection.layer = convolution1dLayer(1,numFilters,Name="convSkip");lgraph = addLayers(lgraph,layer);lgraph = connectLayers(lgraph,outputName,"convSkip");lgraph = connectLayers(lgraph,"convSkip","add_" + i + "/in2");elselgraph = connectLayers(lgraph,outputName,"add_" + i + "/in2");end% Update layer output name.outputName = "add_" + i;
endfunction [z] = levy(n,m,beta)num = gamma(1+beta)*sin(pi*beta/2); % used for Numerator den = gamma((1+beta)/2)*beta*2^((beta-1)/2); % used for Denominatorsigma_u = (num/den)^(1/beta);% Standard deviationu = random('Normal',0,sigma_u,n,m); v = random('Normal',0,1,n,m);z =u./(abs(v).^(1/beta));end

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/303060.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HarmonyOS实战开发-如何使用 geolocation 实现获取当前位置经纬度

介绍 本示例使用 geolocation 实现获取当前位置的经纬度,然后通过 http 将经纬度作为请求参数,获取到该经纬度所在的城市。通过 AlphabetIndexer 容器组件实现按逻辑结构快速定位容器显示区域。 效果预览 使用说明 1.进入主页,点击国内热门城市,配送地址会更新为选择的城…

AI大模型探索之路-应用篇2:Langchain框架ModelIO模块—数据交互的秘密武器

目录 前言 一、概述​​​​​​​ 二、Model 三、Prompt 五、Output Parsers 总结 前言 随着人工智能技术的不断进步,大模型的应用场景越来越广泛。LangChain框架作为一个创新的解决方案,专为处理大型语言模型的输入输出而设计。其中,…

如何通过navicat连接SQL Server数据库

本文介绍如何通过Navicat 连接SQL Server数据库。如果想了解如何连接Oracle数据库,可以参考下边这篇文章。如何通过Navicat连接Oracle数据库https://sgknight.blog.csdn.net/article/details/132064235 1、新建SQL Server连接配置 打开Navicat软件,点击…

智过网:非安全专业能否报考注安?哪些专业可以报考?

近年来,随着社会对安全生产管理的日益重视,注册安全工程师(简称注安)这一职业逐渐受到广大从业人员的青睐。然而,对于许多非安全专业的朋友来说,他们可能会困惑:非安全专业是否可以报考注安&…

【VUE】Vue3+Element Plus动态间距处理

目录 1. 动态间距调整1.1 效果演示1.2 代码演示 2. 固定间距2.1 效果演示2.2 代码演示 其他情况 1. 动态间距调整 1.1 效果演示 并行效果 并列效果 1.2 代码演示 <template><div style"margin-bottom: 15px">direction:<el-radio v-model"d…

【状态机dp】【 排序 】 2809使数组和小于等于 x 的最少时间

本文涉及知识点 【状态机dp】 排序 LeetCode 2809. 使数组和小于等于 x 的最少时间 给你两个长度相等下标从 0 开始的整数数组 nums1 和 nums2 。每一秒&#xff0c;对于所有下标 0 < i < nums1.length &#xff0c;nums1[i] 的值都增加 nums2[i] 。操作 完成后 &…

在【Cencos7】中安装【Nacos】并适配【PostgreSQL】数据库

在【Cencos7】中安装【Nacos-2.3.0】并适配【PostgreSQL】数据库 安装JDK wget命令下载&#xff1a; wget https://repo.huaweicloud.com/java/jdk/8u151-b12/jdk-8u151-linux-x64.tar.gz解压 tar -xzvf jdk-7u80-linux-x64.tar.gz将解压后的目录移动到/opt下 sudo mv jdk…

stable diffusion的从安装到使用

stable-diffusion&#xff0c;一个免费开源的文生图软件&#xff0c;文章主要讲怎么从源码开始安装&#xff0c;以及使用的方式 git地址&#xff1a;https://github.com/AUTOMATIC1111/stable-diffusion-webui 本人电脑环境win10&#xff0c;软件pycharm&#xff0c;需要提前…

酷开系统表现强劲,酷开科技视频化运营为大内容布局提供更好交互

最近几年&#xff0c;电视屏幕尺寸是越做越大&#xff0c;越做越薄&#xff0c;在追求电视“颜值”的同时&#xff0c;电视内置系统也成了人们选购电视的很重要的原因。酷开科技深耕电视大屏领域多年&#xff0c;酷开系统表现强劲&#xff0c;好评如潮。 有人一度认为多媒体的…

spring Cache的基本使用

一、spring Cache基本介绍&#xff08;其实是通过代理对象来进行操作的&#xff09; Spring Cache 是 Spring 框架提供的一个缓存抽象&#xff0c;它能够轻松地集成到 Spring 应用程序中&#xff0c;为方法调用的结果提供缓存支持&#xff0c;从而提高应用程序的性能和响应速度…

关于Ansible模块 ④

转载说明&#xff1a;如果您喜欢这篇文章并打算转载它&#xff0c;请私信作者取得授权。感谢您喜爱本文&#xff0c;请文明转载&#xff0c;谢谢。 继《关于Ansible的模块 ①》、《关于Ansible的模块 ②》与《关于Ansible的模块 ③》之后&#xff0c;继续学习ansible常用模块之…

REST API实战演练之JavaScript使用Rest API

咱们前面讲了一下如何创建REST API 假期别闲着&#xff1a;REST API实战演练之创建Rest API-CSDN博客 又讲了java客户端如何使用REST API 假期别闲着&#xff1a;REST API实战演练之客户端使用Rest API-CSDN博客 接下来咱们看看JavaScript怎么使用REST API。 一、新建一个…

软件杯 深度学习人体跌倒检测 -yolo 机器视觉 opencv python

0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; **基于深度学习的人体跌倒检测算法研究与实现 ** 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0c;学长非常推荐&#xff01; &#x1f947;学长这里给一个题目综合评分(每项满…

(源码+部署+讲解)基于Spring Boot + Vue的车位租赁系统设计与实现

前言 &#x1f497;博主介绍&#xff1a;✌专注于Java、小程序技术领域和毕业项目实战✌&#x1f497; &#x1f447;&#x1f3fb; 精彩专栏 推荐订阅&#x1f447;&#x1f3fb; 2024年Java精品实战案例《100套》 &#x1f345;文末获取源码联系&#x1f345; &#x1f31f;…

Angular 使用DomSanitizer

跨站脚本Cross-site scripting 简称XSS&#xff0c;是代码注入的一种&#xff0c;是一种网站应用程序的安全漏洞攻击。它允许恶意用户将代码注入到网页上&#xff0c;其他用户在使用网页时就会收到影响&#xff0c;这类攻击通常包含了HTML和用户端脚本语言&#xff08;JS&…

PaddleVideo:PP-TSM 视频分类

本文记录&#xff1a;使用Paddle框架训练TSM&#xff08;Temporal Shift Module&#xff09; 前提条件&#xff1a;已经安装Paddle和PadleVideo&#xff0c;具体可参考前一篇文章。 1-数据准备&#xff1a; 以UCF101为例&#xff1a;内含13320 个短视频&#xff0c;视频类别&…

ASP.NET Core 标识(Identity)框架系列(一):如何使用 ASP.NET Core 标识(Identity)框架创建用户和角色?

前言 ASP.NET Core 内置的标识&#xff08;identity&#xff09;框架&#xff0c;采用的是 RBAC&#xff08;role-based access control&#xff0c;基于角色的访问控制&#xff09;策略&#xff0c;是一个用于管理用户身份验证、授权和安全性的框架。 它提供了一套工具和库&…

AI实时换天解决方案:重塑汽车与旅行拍摄新视界

在汽车拍摄与旅行摄影领域&#xff0c;天空作为画面中的重要元素&#xff0c;往往决定着整体视觉效果的成败。美摄科技作为业界领先的AI视觉技术提供商&#xff0c;近日推出了全新的AI实时换天解决方案&#xff0c;为用户带来了前所未有的创意空间与效率提升。 传统的换天技术…

hive-3.1.2分布式搭建与hive的三种交互方式

hive-3.1.2分布式搭建&#xff1a; 一、上传解压配置环境变量 在官网或者镜像站下载驱动包 华为云镜像站地址&#xff1a; hive&#xff1a;Index of apache-local/hive/hive-3.1.2 mysql驱动包&#xff1a;Index of mysql-local/Downloads/Connector-J # 1、解压 tar -zx…

03 Php学习:echo 、 print 、EOF

echo 和 print 在 PHP 中有两个基本的输出方式&#xff1a; echo 和 print。 echo 和 print 区别: echo - 可以输出一个或多个字符串print - 只允许输出一个字符串&#xff0c;返回值总为 1 注意&#xff1a;echo 输出的速度比 print 快&#xff0c; echo 没有返回值&…