软件杯 深度学习人体跌倒检测 -yolo 机器视觉 opencv python

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习的人体跌倒检测算法研究与实现 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:5分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

在这里插入图片描述

1.前言

人体跌倒是人们日常生活中常见姿态之一,且跌倒的发生具有随机、难以预测的特点;其次,跌倒会给人体造成不同程度的伤害,很多人跌倒后由于得不到及时的救助而加重受到的伤害,甚至出现残疾或者死亡的情况;同时随着人口老龄化问题的日渐加剧,跌倒已经成为了我国65周岁以上老人受伤致死的主要原因。因此,跌倒事件严重影响着人们的身体健康,跌倒检测具有十分重要的研究意义。

2.实现效果

跌倒效果

在这里插入图片描述

站立、蹲坐效果

在这里插入图片描述

在这里插入图片描述

3.相关技术原理

3.1卷积神经网络

简介

CNN 是目前机器用来识别物体的图像处理器。CNN
已成为当今自动驾驶汽车、石油勘探和聚变能研究领域的眼睛。在医学成像方面,它们可以帮助更快速发现疾病并挽救生命。得益于 CNN 和递归神经网络
(RNN),各种 AI 驱动型机器都具备了像我们眼睛一样的能力。经过在深度神经网络领域数十年的发展以及在处理海量数据的 GPU
高性能计算方面的长足进步,大部分 AI 应用都已成为可能。

原理

人工神经网络是一个硬件和/或软件系统,模仿神经元在人类大脑中的运转方式。卷积神经网络 (CNN)
通常会在多个全连接或池化的卷积层中应用多层感知器(对视觉输入内容进行分类的算法)的变体。

CNN
的学习方式与人类相同。人类出生时并不知道猫或鸟长什么样。随着我们长大成熟,我们学到了某些形状和颜色对应某些元素,而这些元素共同构成了一种元素。学习了爪子和喙的样子后,我们就能更好地区分猫和鸟。

神经网络的工作原理基本也是这样。通过处理标记图像的训练集,机器能够学习识别元素,即图像中对象的特征。

CNN
是颇受欢迎的深度学习算法类型之一。卷积是将滤波器应用于输入内容的简单过程,会带来以数值形式表示的激活。通过对图像反复应用同一滤波器,会生成名为特征图的激活图。这表示检测到的特征的位置和强度。

卷积是一种线性运算,需要将一组权重与输入相乘,以生成称为滤波器的二维权重数组。如果调整滤波器以检测输入中的特定特征类型,则在整个输入图像中重复使用该滤波器可以发现图像中任意位置的特征。

在这里插入图片描述

关键代码

基于tensorflow的代码实现

import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_datamnist = input_data.read_data_sets('MNIST_data_bak/', one_hot=True)sess = tf.InteractiveSession()# 截断的正太分布噪声,标准差设为0.1def weight_variable(shape):initial = tf.truncated_normal(shape, stddev=0.1)return tf.Variable(initial)def bias_variable(shape):initial = tf.constant(0.1, shape=shape)return tf.Variable(initial)# 卷积层和池化层也是接下来要重复使用的,因此也为它们定义创建函数# tf.nn.conv2d是TensorFlow中的2维卷积函数,参数中x是输入,W是卷积的参数,比如[5, 5, 1, 32]# 前面两个数字代表卷积核的尺寸,第三个数字代表有多少个channel,因为我们只有灰度单色,所以是1,如果是彩色的RGB图片,这里是3# 最后代表核的数量,也就是这个卷积层会提取多少类的特征# Strides代表卷积模板移动的步长,都是1代表会不遗漏地划过图片的每一个点!Padding代表边界的处理方式,这里的SAME代表给# 边界加上Padding让卷积的输出和输入保持同样SAME的尺寸def conv2d(x, W):return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')# tf.nn.max_pool是TensorFlow中的最大池化函数,我们这里使用2*2的最大池化,即将2*2的像素块降为1*1的像素# 最大池化会保留原始像素块中灰度值最高的那一个像素,即保留最显著的特征,因为希望整体上缩小图片尺寸,因此池化层# strides也设为横竖两个方向以2为步长。如果步长还是1,那么我们会得到一个尺寸不变的图片def max_pool_2x2(x):return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')# 因为卷积神经网络会利用到空间结构信息,因此需要将1D的输入向量转为2D的图片结构,即从1*784的形式转为原始的28*28的结构
# 同时因为只有一个颜色通道,故最终尺寸为[-1, 28, 28, 1],前面的-1代表样本数量不固定,最后的1代表颜色通道数量
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])
x_image = tf.reshape(x, [-1, 28, 28, 1])# 定义我的第一个卷积层,我们先使用前面写好的函数进行参数初始化,包括weights和bias,这里的[5, 5, 1, 32]代表卷积
# 核尺寸为5*5,1个颜色通道,32个不同的卷积核,然后使用conv2d函数进行卷积操作,并加上偏置项,接着再使用ReLU激活函数进行
# 非线性处理,最后,使用最大池化函数max_pool_2*2对卷积的输出结果进行池化操作
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)# 第二层和第一个一样,但是卷积核变成了64
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)# 因为前面经历了两次步长为2*2的最大池化,所以边长已经只有1/4了,图片尺寸由28*28变成了7*7
# 而第二个卷积层的卷积核数量为64,其输出的tensor尺寸即为7*7*64
# 我们使用tf.reshape函数对第二个卷积层的输出tensor进行变形,将其转成1D的向量
# 然后连接一个全连接层,隐含节点为1024,并使用ReLU激活函数
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)# 防止过拟合,使用Dropout层
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)# 接 Softmax分类
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)# 定义损失函数
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv),reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

3.1YOLOV5简介

基于卷积神经网络(convolutional neural network, CNN)的目标检测模型研究可按检测阶段分为两类,一 类 是 基 于 候 选 框
的 两 阶 段 检 测 , R-CNN 、 Fast R-CNN、Faster R-CNN、Mask R-CNN都是基于
目标候选框的两阶段检测方法;另一类是基于免候选框的单阶段检测,SSD、YOLO系列都是典型的基于回归思想的单阶段检测方法。

YOLOv5 目标检测模型 2020年由Ultralytics发布的YOLOv5在网络轻量化 上贡献明显,检测速度更快也更加易于部署。与之前
版本不同,YOLOv5 实现了网络架构的系列化,分别 是YOLOv5n、YOLOv5s、YOLOv5m、YOLOv5l、
YOLOv5x。这5种模型的结构相似,通过改变宽度倍 数(Depth multiple)来改变卷积过程中卷积核的数量, 通 过 改 变 深 度 倍 数
(Width multiple) 来 改 变 BottleneckC3(带3个CBS模块的BottleneckCSP结构)中
C3的数量,从而实现不同网络深度和不同网络宽度之 间的组合,达到精度与效率的平衡。YOLOv5各版本性能如图所示:

在这里插入图片描述

模型结构图如下:

在这里插入图片描述

3.2 YOLOv5s 模型算法流程和原理

YOLOv5s模型主要算法工作流程原理:

(1) 原始图像输入部分加入了图像填充、自适应 锚框计算、Mosaic数据增强来对数据进行处理增加了 检测的辨识度和准确度。

(2) 主干网络中采用Focus结构和CSP1_X (X个残差结构) 结构进行特征提取。在特征生成部分, 使用基于SPP优化后的SPPF结构来完成。

(3) 颈部层应用路径聚合网络[22](path-aggregation network, PANet)和CSP2_X进行特征融合。

(4) 使用GIOU_Loss作为损失函数。

关键代码:

4.数据集处理

获取摔倒数据集准备训练,如果没有准备好的数据集,可自己标注,但过程会相对繁琐

深度学习图像标注软件众多,按照不同分类标准有多中类型,本文使用LabelImg单机标注软件进行标注。LabelImg是基于角点的标注方式产生边界框,对图片进行标注得到xml格式的标注文件,由于边界框对检测精度的影响较大因此采用手动标注,并没有使用自动标注软件。

考虑到有的朋友时间不足,博主提供了标注好的数据集和训练好的模型,需要请联系。

3.1 数据标注简介

通过pip指令即可安装


pip install labelimg

在命令行中输入labelimg即可打开

在这里插入图片描述

打开你所需要进行标注的文件夹,点击红色框区域进行标注格式切换,我们需要yolo格式,因此切换到yolo

点击Create RectBo -> 拖拽鼠标框选目标 -> 给上标签 -> 点击ok

3.2 数据保存

点击save,保存txt。

在这里插入图片描述

5.模型训练

配置超参数
主要是配置data文件夹下的yaml中的数据集位置和种类:

在这里插入图片描述

配置模型
这里主要是配置models目录下的模型yaml文件,主要是进去后修改nc这个参数来进行类别的修改。

在这里插入图片描述

目前支持的模型种类如下所示:

在这里插入图片描述

训练

如果上面的数据集和两个yaml文件的参数都修改好了的话,就可以开始yolov5的训练了。首先我们找到train.py这个py文件。

然后找到主函数的入口,这里面有模型的主要参数。修改train.py中的weights、cfg、data、epochs、batch_size、imgsz、device、workers等参数

在这里插入图片描述

至此,就可以运行train.py函数训练自己的模型了。

训练代码成功执行之后会在命令行中输出下列信息,接下来就是安心等待模型训练结束即可。

在这里插入图片描述

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/303044.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

(源码+部署+讲解)基于Spring Boot + Vue的车位租赁系统设计与实现

前言 💗博主介绍:✌专注于Java、小程序技术领域和毕业项目实战✌💗 👇🏻 精彩专栏 推荐订阅👇🏻 2024年Java精品实战案例《100套》 🍅文末获取源码联系🍅 🌟…

Angular 使用DomSanitizer

跨站脚本Cross-site scripting 简称XSS,是代码注入的一种,是一种网站应用程序的安全漏洞攻击。它允许恶意用户将代码注入到网页上,其他用户在使用网页时就会收到影响,这类攻击通常包含了HTML和用户端脚本语言(JS&…

PaddleVideo:PP-TSM 视频分类

本文记录:使用Paddle框架训练TSM(Temporal Shift Module) 前提条件:已经安装Paddle和PadleVideo,具体可参考前一篇文章。 1-数据准备: 以UCF101为例:内含13320 个短视频,视频类别&…

ASP.NET Core 标识(Identity)框架系列(一):如何使用 ASP.NET Core 标识(Identity)框架创建用户和角色?

前言 ASP.NET Core 内置的标识(identity)框架,采用的是 RBAC(role-based access control,基于角色的访问控制)策略,是一个用于管理用户身份验证、授权和安全性的框架。 它提供了一套工具和库&…

AI实时换天解决方案:重塑汽车与旅行拍摄新视界

在汽车拍摄与旅行摄影领域,天空作为画面中的重要元素,往往决定着整体视觉效果的成败。美摄科技作为业界领先的AI视觉技术提供商,近日推出了全新的AI实时换天解决方案,为用户带来了前所未有的创意空间与效率提升。 传统的换天技术…

hive-3.1.2分布式搭建与hive的三种交互方式

hive-3.1.2分布式搭建: 一、上传解压配置环境变量 在官网或者镜像站下载驱动包 华为云镜像站地址: hive:Index of apache-local/hive/hive-3.1.2 mysql驱动包:Index of mysql-local/Downloads/Connector-J # 1、解压 tar -zx…

03 Php学习:echo 、 print 、EOF

echo 和 print 在 PHP 中有两个基本的输出方式: echo 和 print。 echo 和 print 区别: echo - 可以输出一个或多个字符串print - 只允许输出一个字符串,返回值总为 1 注意:echo 输出的速度比 print 快, echo 没有返回值&…

【已完成】把Win10右键改回Win7的模样

win11右键设置成原来模样的方法如下: 1、winr打开运行窗口,输入regedit,按下回车键确认即可打开注册表。 2、在路径中输入:HKEY_CURRENT_USER\SOFTWARE\CLASSES\CLSID,或者是依次定位点开到CLSID。 3、右键点击CLSID&…

Nginx反向代理与Tomcat实现ssm项目前后端分离部署

Nginx nginx是一款http和支持反向代理的web服务器,以其优越的性能被广泛使用。以下是百度百科的介绍。 Nginx (engine x) 是一个高性能的HTTP和反向代理web服务器,同时也提供了IMAP/POP3/SMTP服务。Nginx是由伊戈尔赛索耶夫为俄罗斯访问量第二的Rambler.…

基础入门-操作系统名词文件下载反弹shell防火墙绕过

目录 基础入门-操作系统&名词&文件下载&反弹shell&防火墙绕过 知识点 参考: 演示案例 基础案例 1:操作系统-用途&命令&权限&用户&防火墙 实用案例 1:文件上传下载-->解决无图形化&解决数据传输 实用案例 …

Redis中的集群(二)

节点 集群数据结构 redisClient结构和clusterLink结构的相同和不同之处 redisClient结构和clusterLink结构都有自己的套接字描述符和输入、输出缓冲区,这两个结构的区别在于,redisClient结构中的套接字和缓冲区是用于连接客户端的,而clust…

Visual Studio Code 终端为管理员权限

第一部 1、 Visual Studio Code 快捷方式启动选项加上管理员启动 第二步 管理员方式运行 powershell Windows 10的任务栏自带了搜索。或者开始菜单选搜索只需在搜索框中输入powershell。 在出来的搜索结果中右击Windows PowerShell,然后选择以管理员方式运行。 执…

网络安全:重要性与应对措施

1. 网络安全的重要性 随着互联网的普及和信息技术的快速发展,网络安全问题已经变得日益突出。网络攻击者可以通过各种手段窃取个人信息、破坏系统、传播病毒等,给个人和社会带来巨大的损失。因此,网络安全已经成为信息化时代的重要问题之一。…

numpy,matplotilib学习(菜鸟教程)

所有内容均来自于: NumPy 教程 | 菜鸟教程 Matplotlib 教程 | 菜鸟教程 numpy模块 numpy.nditer NumPy 迭代器对象 numpy.nditer 提供了一种灵活访问一个或者多个数组元素的方式。 for x in np.nditer(a, orderF):Fortran order,即是列序优先&#x…

UML2.0在系统设计中的实际使用情况

目前我在系统分析设计过程中主要使用UML2.0来表达,使用StarUML软件做实际设计,操作起来基本很顺手,下面整理一下自己的使用情况。 1. UML2.0之十三张图 UML2.0一共13张图,可以分为两大类:结构图-静态图,行…

CADMap3D2024 2023下载地址及安装教程

CAD Map 3D是由Autodesk开发的一款专业的地图制作和GIS(地理信息系统)软件。它是AutoCAD系列软件的一个扩展,提供了一系列特定于地理数据的工具和功能。 CAD Map 3D主要用于处理和管理与地理空间相关的数据,在地图制作、城市规划…

备考分享丨云计算HCIE实验考试需要注意什么

去年九月底我在朋友的推荐下报考了誉天的云计算方向,在此期间我非常感谢田sir、苗苗老师和凡凡老师,每次我遇见问题找他们都能给我完完全全的解决,给我这个非科班出身的学员很大的鼓励与帮助。 我是经济学专业,毕业之后没有考研&…

04---webpack编写可维护的构建配置

01 构建配置抽离成npm包; 意义:通用性: 业务开发者无需关注构建配置 统一团队构建脚本可维护性:构建配置合理的拆分 质量:冒烟测试 单元测试 持续集成构建配置管理的可选方案:1 通过多个配置文件管理不同…

基于Android的记单词App系统的设计与实现

博主介绍:✌IT徐师兄、7年大厂程序员经历。全网粉丝15W、csdn博客专家、掘金/华为云//InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专栏推荐订阅👇&#x1f3…

019——IIC模块驱动开发(基于EEPROM【AT24C02】和I.MX6uLL)

目录 一、 IIC基础知识 二、Linux中的IIC(韦东山老师的学习笔记) 1. I2C驱动程序的层次 2. I2C总线-设备-驱动模型 2.1 i2c_driver 2.2 i2c_client 三、 AT24C02 介绍 四、 AT24C02驱动开发 实验 驱动程序 应用程序 一、 IIC基础知识 总线类…