【三十九】【算法分析与设计】综合练习(5),79. 单词搜索,1219. 黄金矿工,980. 不同路径 III

79. 单词搜索

给定一个 m x n 二维字符网格 board 和一个字符串单词 word 。如果 word 存在于网格中,返回 true ;否则,返回 false

单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中“相邻”单元格是那些水平相邻或垂直相邻的单元格。同一个单元格内的字母不允许被重复使用。

示例 1:

输入:board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "ABCCED" 输出:true

示例 2:

输入:board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "SEE" 输出:true

示例 3:

输入:board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "ABCB" 输出:false

提示:

  • m == board.length

  • n = board[i].length

  • 1 <= m, n <= 6

  • 1 <= word.length <= 15

  • boardword 仅由大小写英文字母组成

进阶:你可以使用搜索剪枝的技术来优化解决方案,使其在 board 更大的情况下可以更快解决问题?

宏观地看待递归。递归函数,自己调用自己,同一个函数需要表示递归图中任何一个节点。

因此我们需要一些变量与递归函数进行绑定,这些变量帮助我们知道现在的递归函数是在递归图的哪一个节点。

其次,我们还需要能够知道如何从当前的递归节点到达孩子递归节点,这一个过程也需要一些变量的帮助。

因此我们有两个需要做的事情,第一件事是知道当前递归函数代表递归图的哪一个节点。

第二件事是知道如何从当前递归图节点到达孩子递归图节点。

bool dfs(vector<vector<char>>& board, int i, int j, int pos) {

递归函数是这样定义的,它表示当前在递归图的位置(i,j)对应的位置,它如何找到孩子递归图节点,通过pos变量,pos表示word中下一个查找的值,也就是孩子节点对应的值。

对于递归图特定节点,有四个可能的子孩子位置,分别是(i,j)位置的左边,右边,上边,下边。

左边是(i,j-1),右边是(i,j+1),上边是(i-1,j),下边是(i+1,j)。

此时思考如何剪枝,走过的路我们不走,因此需要一个visit数组,用来划分集合,一个集合是走过的路,一个集合是没有走过的路。所以只需要两个不同的值对应即可。可以思考到bool类型。

如果使用int类型,可以对应多个集合,不同的int类型值对应一个集合,例如1对应一个集合,2对应一个集合,等等以此类推。

思考递归出口,如果当前递归图节点,pos==word.size(),说明当前节点已经是最后一个单词的字母。此时直接返回就可以了。

 
class Solution {
public:bool visit[7][7];int row, col;int dx[4] = {0, 0, 1, -1};int dy[4] = {1, -1, 0, 0};string word;bool exist(vector<vector<char>>& board, string _word) {word = _word;row = board.size();col = board[0].size();for (int i = 0; i < row; i++) {for (int j = 0; j < col; j++) {if (board[i][j] == word[0]) {visit[i][j] = true;if (dfs(board, i, j, 1))return true;visit[i][j] = false;}}}return false;}bool dfs(vector<vector<char>>& board, int i, int j, int pos) {if (pos == word.size()) {return true;}for (int k = 0; k < 4; k++) {int x = i + dx[k];int y = j + dy[k];if (x >= 0 && x < row && y >= 0 && y < col && !visit[x][y] &&board[x][y] == word[pos]) {visit[x][y] = true;if (dfs(board, x, y, pos + 1))return true;visit[x][y] = false;}}return false;}
};

定义全局变量,就不需要给递归函数进行传参。

bool visit[7][7];

定义bool类型的visit数组,进行集合的划分,visit[i][j]对应(i,j)位置,true表示使用过,false表示没有使用过。

int row, col;

定义全局变量row,col分别表示行与列。

int dx[4] = {0, 0, 1, -1}; int dy[4] = {1, -1, 0, 0};

如何快速得到(i,j)位置上下左右四个方位的坐标,利用向量法。

可以知道,这四个位置分别是(i+1,j),(i-1,j),(i,j+1),(i,j-1)。

可以写成(i,j)+(1,0),(i,j)+(-1,0),(i,j)+(0,1),(i,j)+(0,-1)。

只需要表示出增量即可。

dx表示x方向的增量,dy表示y方向的增量。

dx[k],dy[k]共同表示某一个增量组合。

因此dx dy的形式,其中一个增量数组0,0,1,-1。

另一个增量数组在1,-1出现的位置只出现0。另外两个位置出现1,-1。

string word;

小技巧,将函数中的变量变成全局变量,修改名字,在名字前面添加下划线_,然后再全局变量创建一个原名,在函数中赋值过去即可。 bool exist(vector<vector<char>>& board, string _word) { word = _word; row = board.size(); col = board[0].size();

对全局变量的计算,初始化。

for (int i = 0; i < row; i++) { for (int j = 0; j < col; j++) { if (board[i][j] == word[0]) { visit[i][j] = true; if (dfs(board, i, j, 1)) return true; visit[i][j] = false; } } }

遍历递归图中最开始的位置,如果找到word中第一个字符,此时这个位置就是最开始的位置。

注意维护变量,visit。因为visit是全局变量,所以需要手动回溯。

为什么需要回溯?因为这些变量共同表示递归图中某一个位置的节点,当前是这个节点,这些变量就必须维护对应的值。

但是部分节点变量在递归函数中作为形参,此时系统会自动帮我们进行回溯操作。

小技巧:如果是int char等类型,空间小的数据类型,可以放到递归函数中作为形参。

如果是vector空间大的数据类型,放到全局变量中,而不是放到递归韩式作为形参。

因为作为形参每一次都需要重新开辟空间,赋值,如果空间大的这种消耗比较大。

if (dfs(board, i, j, 1)) return true;

注意这条语句,这种用法,是递归寻找某一个特定的值的时候使用,当找到之后,就不需要再递归下去了。

如果找到了,就返回true,如果递归图中子节点找到了,当前节点就不需要再递归其他可能性了,直接返回true。

可以理解为,定义递归函数bool表示当前递归节点树,中是否能够找到。true表示找到了。

如果遍历完,没有返回true,说明所有递归图节点树都没有找到,返回false。 return false; bool dfs(vector<vector<char>>& board, int i, int j, int pos) { if (pos == word.size()) { return true; }

递归的出口,pos表示递归图子节点的可能性。pos==word.size()表示当前节点就是最后一个字母,此时找到了序列,直接返回true。

for (int k = 0; k < 4; k++) { int x = i + dx[k]; int y = j + dy[k]; if (x >= 0 && x < row && y >= 0 && y < col && !visit[x][y] && board[x][y] == word[pos]) { visit[x][y] = true; if (dfs(board, x, y, pos + 1)) return true;

如果递归图子树找到了,不需要继续递归下去了,直接返回true。

visit[x][y] = false; } } return false;

如果当前节点的所有子树都没有找到,说明当前节点也找不到,返回false。

1219. 黄金矿工

你要开发一座金矿,地质勘测学家已经探明了这座金矿中的资源分布,并用大小为 m * n 的网格 grid 进行了标注。每个单元格中的整数就表示这一单元格中的黄金数量;如果该单元格是空的,那么就是 0

为了使收益最大化,矿工需要按以下规则来开采黄金:

  • 每当矿工进入一个单元,就会收集该单元格中的所有黄金。

  • 矿工每次可以从当前位置向上下左右四个方向走。

  • 每个单元格只能被开采(进入)一次。

  • 不得开采(进入)黄金数目为 0 的单元格。

  • 矿工可以从网格中 任意一个 有黄金的单元格出发或者是停止。

示例 1:

输入:grid = [[0,6,0],[5,8,7],[0,9,0]] 输出:24 解释: [[0,6,0], [5,8,7], [0,9,0]] 一种收集最多黄金的路线是:9 -> 8 -> 7。

示例 2:

输入:grid = [[1,0,7],[2,0,6],[3,4,5],[0,3,0],[9,0,20]] 输出:28 解释: [[1,0,7], [2,0,6], [3,4,5], [0,3,0], [9,0,20]] 一种收集最多黄金的路线是:1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7。

提示:

  • 1 <= grid.length, grid[i].length <= 15

  • 0 <= grid[i][j] <= 100

  • 最多 25 个单元格中有黄金。

 
class Solution {
public:int row, col;bool visit[16][16];int ret;int getMaximumGold(vector<vector<int>>& grid) {row = grid.size(), col = grid[0].size();for (int i = 0; i < row; i++)for (int j = 0; j < col; j++) {if (grid[i][j] != 0) {visit[i][j] = true;dfs(grid, i, j, grid[i][j]);visit[i][j] = false;}}return ret;}int dx[4] = {0, 0, -1, 1}, dy[4] = {1, -1, 0, 0};void dfs(vector<vector<int>>& grid, int i, int j, int path) {ret = max(ret, path);for (int k = 0; k < 4; k++) {int x = i + dx[k], y = j + dy[k];if (x >= 0 && x < row && y >= 0 && y < col && !visit[x][y] &&grid[x][y] != 0) {visit[x][y] = true;dfs(grid, x, y, path + grid[x][y]);visit[x][y] = false;}}}
};

定义全局变量,这样就不需要给递归函数传参数了。

int row, col;

row表示行数,col表示列数。

bool visit[16][16];

划分集合,用来表示(i,j)位置是否被使用,true被使用,false没有被使用。

int ret;

记录结果。

int getMaximumGold(vector<vector<int>>& grid) {

row = grid.size(), col = grid[0].size();

给row和col初始化。

for (int i = 0; i < row; i++)

for (int j = 0; j < col; j++) {

两层for循环遍历最开始递归图的节点。

if (grid[i][j] != 0) {

visit[i][j] = true;

dfs(grid, i, j, grid[i][j]);

这里没有使用bool,返回true的用法,是因为我需要递归所有情况,找到一种情况之后还需要继续递归。

visit[i][j] = false;

手动回溯。

int dx[4] = {0, 0, -1, 1}, dy[4] = {1, -1, 0, 0};

定义增量数组,用来表示(i,j)的四个方位。

void dfs(vector<vector<int>>& grid, int i, int j, int path) {

ret = max(ret, path);

path表示递归图当前节点的有效路径。ret记录所有情况下的最大值。

for (int k = 0; k < 4; k++) {

int x = i + dx[k], y = j + dy[k];

if (x >= 0 && x < row && y >= 0 && y < col && !visit[x][y] &&

grid[x][y] != 0) {

如果x,y位置没有越界,并且没有没使用过,并且值不为0,此时是合法位置。

visit[x][y] = true;

dfs(grid, x, y, path + grid[x][y]);

visit[x][y] = false;

980. 不同路径 III

在二维网格 grid 上,有 4 种类型的方格:

  • 1 表示起始方格。且只有一个起始方格。

  • 2 表示结束方格,且只有一个结束方格。

  • 0 表示我们可以走过的空方格。

  • -1 表示我们无法跨越的障碍。

返回在四个方向(上、下、左、右)上行走时,从起始方格到结束方格的不同路径的数目

每一个无障碍方格都要通过一次,但是一条路径中不能重复通过同一个方格

示例 1:

  1. 输入:[[1,0,0,0],[0,0,0,0],[0,0,2,-1]] 输出:2 解释:我们有以下两条路径: (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2) (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2)

示例 2:

  1. 输入:[[1,0,0,0],[0,0,0,0],[0,0,0,2]] 输出:4 解释:我们有以下四条路径: (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2),(2,3) (0,0),(0,1),(1,1),(1,0),(2,0),(2,1),(2,2),(1,2),(0,2),(0,3),(1,3),(2,3) (0,0),(1,0),(2,0),(2,1),(2,2),(1,2),(1,1),(0,1),(0,2),(0,3),(1,3),(2,3) (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2),(2,3)

示例 3:

输入:[[0,1],[2,0]] 输出:0 解释: 没有一条路能完全穿过每一个空的方格一次。 请注意,起始和结束方格可以位于网格中的任意位置。

提示:

  • 1 <= grid.length * grid[0].length <= 20

 
class Solution {
public:int row, col; // 定义行数和列数int visit[21][21]; // 访问标记数组,记录网格中的位置是否被访问过int step; // 步数计数器,记录从起点到终点需要经过的格子数量int ret; // 结果计数器,记录所有满足条件的路径数量int uniquePathsIII(vector<vector<int>>& grid) {row = grid.size(), col = grid[0].size(); // 初始化行数和列数int bx, by; // 起点的坐标for (int i = 0; i < row; i++)for (int j = 0; j < col; j++) {if (grid[i][j] == 0)step++; // 如果格子为0,说明是空格,需要经过,步数加1else if (grid[i][j] == 1)bx = i, by = j; // 如果格子为1,说明是起点,记录起点坐标}step += 2; // 加上起点和终点的格子visit[bx][by] = true; // 标记起点已访问dfs(grid, bx, by, 1); // 从起点开始进行深度优先搜索return ret; // 返回所有满足条件的路径数量}int dx[4] = {1, -1, 0, 0}, dy[4] = {0, 0, 1, -1}; // 方向数组,用于实现上下左右移动void dfs(vector<vector<int>>& grid, int i, int j, int count) {if (grid[i][j] == 2) { // 如果当前格子是终点if (step == count)ret++; // 如果当前路径长度等于所需步数,结果加1return;}for (int k = 0; k < 4; k++) { // 遍历四个方向int x = i + dx[k], y = j + dy[k]; // 计算下一个格子的坐标if (x >= 0 && x < row && y >= 0 && y < col && !visit[x][y] &&grid[x][y] != -1) { // 确保下一个格子在网格内,未被访问过,且不是障碍物visit[x][y] = true; // 标记为已访问dfs(grid, x, y, count + 1); // 递归搜索下一个格子visit[x][y] = false; // 回溯,取消标记}}}
};

 

结尾

最后,感谢您阅读我的文章,希望这些内容能够对您有所启发和帮助。如果您有任何问题或想要分享您的观点,请随时在评论区留言。

同时,不要忘记订阅我的博客以获取更多有趣的内容。在未来的文章中,我将继续探讨这个话题的不同方面,为您呈现更多深度和见解。

谢谢您的支持,期待与您在下一篇文章中再次相遇!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/303169.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

编程羔手-讲解下YUDAO的Flowable工作流和表格的关系

我这里简单讲解&#xff0c;最好的学习内容就是官方文档(可慢看和作为FYI供你参考) 一般顺序&#xff1a;定义流程模型->流程发布->运行实例&#xff0c;各种查就是历史数据。 数据库表名说明 Flowable的所有数据库表都以ACT_开头。第二部分是说明表用途的两字符标示符…

vue canvas绘制信令图,动态显示标题、宽度、高度

需求: 1、 根据后端返回的数据&#xff0c;动态绘制出信令图 2、根据 dataStatus 返回值&#xff1a; 0 和 1&#xff0c; 判断 文字内容的颜色&#xff0c;0&#xff1a;#000&#xff0c;1&#xff1a;red 3.、根据 lineType 返回值&#xff1a; 0 和 1&#xff0c; 判断 箭…

FPGA:图像数字细节增强算法(工程+仿真+实物,可用毕设)

目录 日常唠嗑一、视频效果二、硬件及功能1、硬件选择2、功能3、特点 未完、待续……四、工程设计五、板级验证六、工程获取 日常唠嗑 有2个多月没写文章了&#xff0c;又是老借口&#xff1a;“最近实在是很忙”&#x1f923;&#xff0c;不过说真&#xff0c;确实是比较忙&am…

vue点击上传图片并实现图片预览功能,并实现多张图片放到一个数组中进行后端请求(使用原生input)

一、将 File 对象转成 BASE64 字符串 &#xff08;FileReader&#xff09; <template><div><!-- 用来显示封面的图片 --><!-- <img src"/assets/images/cover.jpg" alt"" class"cover-img" ref"imgRef" />…

最短编辑距离(线性dp)-java

最短编辑问题也是一种非常经典的二维线性dp问题。 文章目录 前言 一、最短编辑距离问题 二、算法思路 1.dp[i][j]的情况 2.边界问题初始化 3.状态转移方程 三、代码如下 1.代码如下 2.读入数据 3.代码运行结果 总结 前言 最短编辑问题也是一种非常经典的二维线性dp问题。 提示&…

C++学习进阶:unordered_set和ma的实现

目录 前言 1.哈希表的结构 1.1.哈希节点 1.2.迭代器的结构 1.2.1.普通迭代器 1.2.2.const迭代器的实现 1.3.哈希表的实现 2.如何封装哈希表实现个性化的容器 2.1.unordered_set的封装 2.2.unordered_map的封装 3.以上内容的代码实现 3.1.HashTable.h 3.2.unorde…

51单片机之LED点阵屏

目录 1.LED点阵屏简介 2.配置LED点阵屏代码 1.LED点阵屏简介 LED点阵屏真的是遍布我们我们生活的每个角落&#xff0c;从街边的流动显示字的招牌到你的液晶显示屏&#xff0c;都是基于点阵屏的原理研究出来的。还有那个世界上最大的球状建筑物&#xff1a;MSG Sphere&#xff…

低代码ARM计算机在IIoT中的采集控制生产面板

工业4.0的大潮下工业物联网&#xff08;IIoT&#xff09;已成为推动制造业转型升级的重要动力。其中&#xff0c;低代码ARM嵌入式计算机凭借其出色的性能、灵活的配置以及高度集成化的特点&#xff0c;在工业设备远程监控、维护与诊断方面发挥着关键作用。 一、远程监控与维护 …

python爬虫———post请求方式(第十四天)

&#x1f388;&#x1f388;作者主页&#xff1a; 喔的嘛呀&#x1f388;&#x1f388; &#x1f388;&#x1f388;所属专栏&#xff1a;python爬虫学习&#x1f388;&#x1f388; ✨✨谢谢大家捧场&#xff0c;祝屏幕前的小伙伴们每天都有好运相伴左右&#xff0c;一定要天天…

Maven与Jave web结构

Maven 简介 https://www.liaoxuefeng.com/wiki/1252599548343744/1255945359327200 java web module web目录 –src 应用程序源代码和测试程序代码的根目录 –main –java  应用程序源代码目录     --package1     --class1     --class2 –resources  应用…

Docker内更新Jenkins详细讲解

很多小伙伴在Docker中使用Jenkins时更新遇到困难&#xff0c;本次结合自己的实际经验&#xff0c;详细讲解。根据官网Jenkins了解以下内容&#xff1a; 一、Jenkins 是什么? Jenkins是一款开源 CI&CD 软件&#xff0c;用于自动化各种任务&#xff0c;包括构建、测…

Mysql-数据库集群的搭建以及数据库的维护

一、数据库的维护 1.数据库的备份与恢复 1&#xff09;备份指定数据库 #mysqldump -u root -p zx > ./zx.dump 2&#xff09;备份所有库 #mysqldump -u root -p --all-databases > ./all.dump 3)恢复所有库 #mysql -u root -p < ./all.dump 4)恢复指定数据库 #mysq…

网络基础三——IP协议补充和Mac帧协议

全球网络及网段划分的理解 ​ 根据国家组织地区人口综合评估进行IP地址范围的划分&#xff1b; ​ 假设前8位用来区分不同的国家&#xff0c;国际路由器负责全球数据传输&#xff0c;子网掩码为IP/8&#xff1b;次6位区分不同的省份&#xff0c;国内路由器负责全国数据的传输…

再见 MybatisPlus,阿里推出新 ORM 框架更牛X

最近看到一个 ORM 框架 Fluent Mybatis 挺有意思的&#xff0c;整个设计理念非常符合工程师思维。 我对官方文档的部分内容进行了简单整理&#xff0c;通过这篇文章带你看看这个新晋 ORM 框架。 官方文档&#xff1a;https://gitee.com/fluent-mybatis/fluent-mybatis/wikis 提…

Golang | Leetcode Golang题解之第19题删除链表的倒数第N个结点

题目&#xff1a; 题解&#xff1a; func removeNthFromEnd(head *ListNode, n int) *ListNode {dummy : &ListNode{0, head}first, second : head, dummyfor i : 0; i < n; i {first first.Next}for ; first ! nil; first first.Next {second second.Next}second.N…

Redis缓存设计

文章目录 1 缓存的收益与成本分析1.1 收益1.2 成本 2 缓存更新策略的选择和使用场景2.1 LRU/LFU/FIFO算法剔除2.2 超时剔除2.3 主动更新2.4 缓存更新策略对比 2.5 最佳实践 3 缓存粒度控制方法3.1 缓存全部数据3.2 缓存部分数据3.3 缓存粒度控制方法对比 4 缓存穿透问题优化4.1…

(2022级)成都工业学院软件构造实验三:面向数据的软件构造

写在前面 1、基于2022级软件工程实验指导书 2、代码仅提供参考 3、如果代码不满足你的要求&#xff0c;请寻求其他的途径 运行环境 window11家庭版 IntelliJ IDEA 2023.2.2 jdk17.0.6 实验要求 任务&#xff1a; ‍一、构造任务4&#xff1a;批量产生习题并用文件存储…

IntelliJ IDEA 2024.1安装与激活[破解]

一&#xff1a;IDEA官方下载 ①如题&#xff0c;先到IDEA官方下载&#xff0c;简简单单 ②IDEA官方&#xff1a;IntelliJ IDEA – the Leading Java and Kotlin IDE 二&#xff1a;获取脚本 &#x1f31f;网盘下载&#xff1a;jetbra (密码&#xff1a;lzh7) &#x1f31f;获取…

STC89C52学习笔记(七)

STC89C52学习笔记&#xff08;七&#xff09; 综述&#xff1a;本文介绍了串口以及讲述了串口相关寄存器如何配置并给予相关代码。 一、修改代码注意事项 在修改代码时不要一次性加入一堆代码&#xff0c;不利于定位错误。可以先注释一些代码&#xff0c;待解决完毕问题后再…

物联网农业四情在线监测系统

TH-Q2随着科技的飞速发展和信息化时代的来临&#xff0c;物联网技术在各个领域都取得了显著的应用成果。其中&#xff0c;物联网农业四情在线监测系统作为农业现代化的重要组成部分&#xff0c;正在为农业生产带来革命性的变革。 一、物联网农业四情在线监测系统的概念 物联网…