基于PSO优化的CNN-GRU-Attention的时间序列回归预测matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1卷积神经网络(CNN)在时间序列中的应用

4.2 GRU网络

4.3 注意力机制(Attention)

5.算法完整程序工程


1.算法运行效果图预览

优化前

优化后

2.算法运行软件版本

matlab2022a

3.部分核心程序

.....................................................................
for i=1:Iterifor j=1:Npeoprng(i+j)if func_obj(x1(j,:))<pbest1(j)p1(j,:)   = x1(j,:);%变量pbest1(j) = func_obj(x1(j,:));endif pbest1(j)<gbest1g1     = p1(j,:);%变量gbest1 = pbest1(j);endv1(j,:) = 0.8*v1(j,:)+c1*rand*(p1(j,:)-x1(j,:))+c2*rand*(g1-x1(j,:));x1(j,:) = x1(j,:)+v1(j,:); for k=1:dimsif x1(j,k) >= tmps(2,k)x1(j,k) = tmps(2,k);endif x1(j,k) <= tmps(1,k)x1(j,k) = tmps(1,k);endendfor k=1:dimsif v1(j,k) >= tmps(2,k)/2v1(j,k) =  tmps(2,k)/2;endif v1(j,k) <= tmps(1,k)/2v1(j,k) =  tmps(1,k)/2;endendendgb1(i)=gbest1 
end......................................................save R2.mat Num2 Tat_test T_sim2 gb1
125

4.算法理论概述

       时间序列回归预测是数据分析的重要领域,旨在根据历史数据预测未来时刻的数值。近年来,深度学习模型如卷积神经网络(Convolutional Neural Network, CNN)、长短时记忆网络(Long Short-Term Memory, LSTM)以及注意力机制(Attention Mechanism)在时间序列预测中展现出显著优势。然而,模型参数的有效设置对预测性能至关重要。粒子群优化(PSO)作为一种高效的全局优化算法,被引入用于优化深度学习模型的超参数。       

         粒子群优化(PSO)是一种基于群体智能的全局优化算法。每个粒子代表一个可能的解决方案(即模型超参数组合),通过迭代更新粒子的速度和位置,寻找最优解。对于超参数优化问题,粒子位置Pi​表示模型超参数,速度Vi​表示超参数调整方向和幅度。

4.1卷积神经网络(CNN)在时间序列中的应用

        在时间序列数据中,CNN用于提取局部特征和模式。对于一个长度为T的时间序列数据X = [x_1, x_2, ..., x_T],通过卷积层可以生成一组特征映射:

           CNN通过多个卷积层和池化层的堆叠来提取输入数据的特征。每个卷积层都包含多个卷积核,用于捕捉不同的特征。池化层则用于降低数据的维度,减少计算量并增强模型的鲁棒性。

4.2 GRU网络

        GRU(Gated Recurrent Unit)是一种先进的循环神经网络(RNN)变体,专门设计用于处理序列数据,如文本、语音、时间序列等。GRU旨在解决传统RNN在处理长序列时可能出现的梯度消失或梯度爆炸问题,并简化LSTM(Long Short-Term Memory)网络的结构,同时保持其捕获长期依赖关系的能力。

      GRU包含一个核心循环单元,该单元在每个时间步t处理输入数据xt​并更新隐藏状态ht​。其核心创新在于引入了两个门控机制:更新门(Update Gate)重置门(Reset Gate)

4.3 注意力机制(Attention)

       注意力机制是一种让模型能够自动地关注输入数据中重要部分的技术。在时间序列预测中,注意力机制可以帮助模型关注与当前预测最相关的历史信息。       

       CNN-LSTM-Attention模型结合了CNN、LSTM和Attention三种技术的优势。首先,使用CNN提取时间序列中的局部特征;然后,将提取的特征输入到LSTM中,捕捉时间序列中的长期依赖关系;最后,通过注意力机制对LSTM的输出进行加权,使模型能够关注与当前预测最相关的历史信息。具体来说,模型的流程如下:

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/303188.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

番茄 abogus rpc调用

声明: 本文章中所有内容仅供学习交流使用&#xff0c;不用于其他任何目的&#xff0c;抓包内容、敏感网址、数据接口等均已做脱敏处理&#xff0c;严禁用于商业用途和非法用途&#xff0c;否则由此产生的一切后果均与作者无关&#xff01;wx a15018601872 本文章…

STM32+ESP8266水墨屏天气时钟:文字取模和图片取模教程

项目背景 本次的水墨屏幕项目需要显示一些图片和文字&#xff0c;所以需要对图片和文字进行取模。 取模步骤 1.打开取模软件 2.选择图形模式 3.设置字模选项 注意&#xff1a;本次项目采用的是水墨屏&#xff0c;并且是局部刷新的代码&#xff0c;所以设置字模选项可能有点…

人工智能——深度学习

4. 深度学习 4.1. 概念 深度学习是一种机器学习的分支&#xff0c;旨在通过构建和训练多层神经网络模型来实现数据的高级特征表达和复杂模式识别。与传统机器学习算法相比&#xff0c;深度学习具有以下特点&#xff1a; 多层表示学习&#xff1a;深度学习使用深层神经网络&a…

linux 迁移home目录以及修改conda中pip的目录,修改pip安装路径

1&#xff09;sudo rsync -av /home/lrf /data/home/lrf 将/home目录下的文件进行复制&#xff08;假设机械硬盘挂载在/data目录下&#xff09;** 2&#xff09;usermod -d /data/home/lrf -m lrf 修改用户$HOME变量** 3&#xff09;vi /etc/passwd 查看对应用户的$HOME变量是…

环境监测站升级选择ARM网关驱动精准数据采集

物联网技术的深入发展和环保需求的不断攀升&#xff0c;API调用网关在环境监测领域的应用正成为科技创新的重要推手。其中&#xff0c;集成了API调用功能的ARM工控机/网关&#xff0c;以其出色的计算性能、节能特性及高度稳定性&#xff0c;成功搭建起连接物理世界与数字世界的…

hive管理之ctl方式

hive管理之ctl方式 hivehive --service clictl命令行的命令 #清屏 Ctrl L #或者 &#xff01; clear #查看数据仓库中的表 show tabls; #查看数据仓库中的内置函数 show functions;#查看表的结构 desc表名 #查看hdfs上的文件 dfs -ls 目录 #执行操作系统的命令 &#xff01;命令…

【堡垒机】堡垒机的介绍

目前&#xff0c;常用的堡垒机有收费和开源两类。 收费的有行云管家、纽盾堡垒机&#xff1b; 开源的有jumpserver&#xff1b; 这几种各有各的优缺点&#xff0c;如何选择&#xff0c;大家可以根据实际场景来判断 什么是堡垒机 堡垒机&#xff0c;即在一个特定的网络环境下&…

计算机网络 网络命令的使用

一、实验内容 1.PING网络命令的实验 ping 127.0.0.1(内部回环测试)ping 本主机的IP地址ping 默认网关地址ping远端目的地的IP地址ping localhostping域名 2.其他网络命令实验 命令用途ipconfig/all 显示当前系统网络配置&#xff0c;包括IP地址、子网掩码、默认网关等trace…

Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单视频处理实战案例 之七 简单指定视频某片段快放效果

Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单视频处理实战案例 之七 简单指定视频某片段快放效果 目录 Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单视频处理实战案例 之七 简单指定视频某片段快放效果 一、简单介绍 二、简单指定视频某片段快放效果实现原理…

回归预测 | Matlab实现SSA-GRNN麻雀算法优化广义回归神经网络多变量回归预测(含优化前后预测可视化)

回归预测 | Matlab实现SSA-GRNN麻雀算法优化广义回归神经网络多变量回归预测(含优化前后预测可视化) 目录 回归预测 | Matlab实现SSA-GRNN麻雀算法优化广义回归神经网络多变量回归预测(含优化前后预测可视化)预测效果基本介绍程序设计参考资料预测效果

VBA 实现outlook 当邮件设置category: red 即触发自动创建jira issue

1. 打开: Outlook VBA&#xff08;Visual Basic for Applications&#xff09; 方法一: 在邮件直接搜索:Visual Basic editor 方法二: File -> Options -> Customize Ribbon-> 打钩 如下图: 2.设置运行VBA 脚本: File -> Options -> Trust center -> Trus…

【数据结构】:顺序表专题

前言&#xff1a;今天我们开始介绍数据结构有关内容&#xff0c;那么数据结构是什么呢&#xff1f; 数据结构是计算机存储、组织数据的方式。在工作中&#xff0c;我们通常会直接使用已经封装好的集合API(应用程序编程接口)&#xff0c;这样可以更高效地完成任务。但是作为一名…

R+VIC模型融合实践技术应用及未来气候变化模型预测

在气候变化问题日益严重的今天&#xff0c;水文模型在防洪规划&#xff0c;未来预测等方面发挥着不可替代的重要作用。目前&#xff0c;无论是工程实践或是科学研究中都存在很多著名的水文模型如SWAT/HSPF/HEC-HMS等。虽然&#xff0c;这些软件有各自的优点&#xff1b;但是&am…

【QT入门】 Qt自定义控件与样式设计之QPushButton实现鼠标悬浮按钮弹出对话框

往期回顾&#xff1a; 【QT入门】 Qt自定义控件与样式设计之qss选择器-CSDN博客 【QT入门】 Qt自定义控件与样式设计之QLineEdit的qss使用-CSDN博客 【QT入门】Qt自定义控件与样式设计之QPushButton常用qss-CSDN博客 【QT入门】 Qt自定义控件与样式设计之QPushButton实现鼠标悬…

【三十九】【算法分析与设计】综合练习(5),79. 单词搜索,1219. 黄金矿工,980. 不同路径 III

79. 单词搜索 给定一个 m x n 二维字符网格 board 和一个字符串单词 word 。如果 word 存在于网格中&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 单词必须按照字母顺序&#xff0c;通过相邻的单元格内的字母构成&#xff0c;其中“相邻”单元格是那些水平…

编程羔手-讲解下YUDAO的Flowable工作流和表格的关系

我这里简单讲解&#xff0c;最好的学习内容就是官方文档(可慢看和作为FYI供你参考) 一般顺序&#xff1a;定义流程模型->流程发布->运行实例&#xff0c;各种查就是历史数据。 数据库表名说明 Flowable的所有数据库表都以ACT_开头。第二部分是说明表用途的两字符标示符…

vue canvas绘制信令图,动态显示标题、宽度、高度

需求: 1、 根据后端返回的数据&#xff0c;动态绘制出信令图 2、根据 dataStatus 返回值&#xff1a; 0 和 1&#xff0c; 判断 文字内容的颜色&#xff0c;0&#xff1a;#000&#xff0c;1&#xff1a;red 3.、根据 lineType 返回值&#xff1a; 0 和 1&#xff0c; 判断 箭…

FPGA:图像数字细节增强算法(工程+仿真+实物,可用毕设)

目录 日常唠嗑一、视频效果二、硬件及功能1、硬件选择2、功能3、特点 未完、待续……四、工程设计五、板级验证六、工程获取 日常唠嗑 有2个多月没写文章了&#xff0c;又是老借口&#xff1a;“最近实在是很忙”&#x1f923;&#xff0c;不过说真&#xff0c;确实是比较忙&am…

vue点击上传图片并实现图片预览功能,并实现多张图片放到一个数组中进行后端请求(使用原生input)

一、将 File 对象转成 BASE64 字符串 &#xff08;FileReader&#xff09; <template><div><!-- 用来显示封面的图片 --><!-- <img src"/assets/images/cover.jpg" alt"" class"cover-img" ref"imgRef" />…

最短编辑距离(线性dp)-java

最短编辑问题也是一种非常经典的二维线性dp问题。 文章目录 前言 一、最短编辑距离问题 二、算法思路 1.dp[i][j]的情况 2.边界问题初始化 3.状态转移方程 三、代码如下 1.代码如下 2.读入数据 3.代码运行结果 总结 前言 最短编辑问题也是一种非常经典的二维线性dp问题。 提示&…