AI大模型引领未来智慧科研暨ChatGPT自然科学高级应用

以ChatGPT、LLaMA、Gemini、DALL·E、Midjourney、Stable Diffusion、星火大模型、文心一言、千问为代表AI大语言模型带来了新一波人工智能浪潮,可以面向科研选题、思维导图、数据清洗、统计分析、高级编程、代码调试、算法学习、论文检索、写作、翻译、润色、文献辅助阅读、文献信息提取、辅助论文审稿、新闻撰写、科技绘图、地学绘图(GIS地图绘制)、概念图生成、图像识别、教学课件、教学案例生成、基金润色、专业咨询、文件上传和处理、机器/深度学习训练与模拟、大模型API二次开发等特定任务,生成文本、图片、代码、语音、视频等不同形式的数据、模式和内容,成为不少科研工作者的第二大脑

AI大模型引领未来智慧科研暨ChatGPT自然科学高级应用 (qq.com)icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=Mzg2NDYxNjMyNA==&mid=2247560456&idx=4&sn=ff3fd70367025aea8aba8ae6616ec6aa&chksm=ce6507e3f9128ef51da285b10bf2715db967df498766f8d1c191aa7a0eadfcce2fdfc6794054&token=212758782&lang=zh_CN#rd

专题一、开启大模型

1、开启大模型

1)大模型的发展历程与最新功能

2)大模型的强大功能与应用场景

3)国内外经典大模型(ChatGPT、LLaMA、Gemini、DALL·E、Midjourney、Stable Diffusion、星火大模型、文心一言、千问等)

4)如何优雅使用大模型

案例1.1:开启不同平台的大模型

案例1.2:GPT不同版本的使用

案例1.3:大模型文件上传和处理

专题二、基于ChatGPT大模型提问框架

2、提问框架(提示词、指令)

1)专业大模型提示词,助你小白变专家

2)超实用的通用提示词模板

3)GPT store(GPT商店产品)及高级提问技巧

案例2.1:设定角色与投喂规则

案例2.2:行业专家指令合集

案例2.3:角色扮演与不同角度提问

案例2.4:分步提问与上下文关联

案例2.5:经典提问框架练习,提升模型效率

专题三、基于ChatGPT大模型的论文助手

3、基于AI大模型的论文助手

案例3.1:大模型论文润色中英文指令大全

案例3.2:使用大模型进行论文润色

案例3.3:使用大模型对英文文献进行搜索

案例3.4:使用大模型对英文文献进行问答和辅助阅读

案例3.5:使用大模型提取英文文献关键信息

案例3.6:使用大模型对论文进行摘要重写

案例3.7:使用大模型取一个好的论文标题

案例3.8:使用大模型写论文框架和调整论文结构

案例3.9:使用大模型对论文进行翻译

案例3.10:使用大模型对论文进行评论,辅助撰写审稿意见

案例3.11:使用大模型对论文进行降重

案例3.12:使用大模型查找研究热点

案例3.13:使用大模型对你的论文凝练成新闻和微信文案

案例3.14:使用大模型对拓展论文讨论

案例3.15:使用大模型辅助专著、教材、课件的撰写

专题四、基于ChatGPT大模型的数据清洗

4、基于ChatGPT的数据清洗

1)R语言和Python基础(勿需学会,能看懂即可)

2)数据清洗方法(重复值、缺失值处理、异常值检验、标准化、归一化、数据长宽转换,数据分组聚合)

案例4.1:使用大模型指令随机生成数据

案例4.2:使用大模型指令读取数据

案例4.3:使用大模型指令进行数据清洗

案例4.4:使用大模型指令对农业气象数据进行预处理

案例4.5:使用大模型指令对生态数据进行预处理

专题五、基于ChatGPT大模型的统计分析

5、基于AI大模型的统计分析

1)统计假设检验

2) 统计学三大常用检验及其应用场景

3) 方差分析、相关分析、回归分析

案例5.1:使用大模型对生态环境数据进行正态性检验、方差齐性检验

案例5.2:使用大模型进行t检验、F检验和卡方检验

案例5.3:使用大模型对生态环境数据进行方差分析、相关分析及回归分析

图片

专题六、基于ChatGPT的经典统计模型

6、基于AI大模型的经典统计模型构建

案例6.1:基于AI辅助构建的混合线性模型在生态学中应用

案例6.2:基于AI辅助的全球尺度Meta分析及诊断、绘图

案例6.3:基于AI辅助的生态环境数据结构方程模型构建

图片

专题七、基于ChatGPT的优化算法

7、基于AI大模型的频率派和贝叶斯派优化算法

案例7.1:最小二乘法优化模型参数优化

案例7.2:遗传算法、差分进化算法参数优化

案例7.3:贝叶斯定理和贝叶斯优化算法

案例7.4:蒙特拉罗马尔科夫链MCMC进行参数优化

图片

专题八、基于ChatGPT大模型的机器学习

8、基于AI大模型的机器/深度学习

1)机器/深度学习

2)线性代数基础、特征值和特征向量

3)机器学习监督学习(回归、分类)、非监督学习(降维、聚类)

4)特征工程、数据分割、目标函数、参数优化、交叉验证、超参数寻优

5)主成分分析、LDA、NMS、T-SNE、UMAP、Kmeans、Agglomerative、DBSCAN

6)支持向量机、决策树、随机森林、XGBoost、AdaBoost、LightGBM、高斯过程

7)深度学习算法(神经网络、激活函数、交叉熵、优化器)

8)AI大模型的底层逻辑和算法结构(GPT1-GPT4)

9)卷积神经网络、长短期记忆网络(LSTM)

案例8.1:使用大模型指令构建回归模型(多元线性回归、随机森林、XGBoost、LightGBM等)

案例8.2:使用大模型指令构建分类模型(支持向量机、XGBoost等)

案例8.3:使用大模型指令构建降维模型

案例8.4:使用大模型指令构建聚类模型

案例8.5:使用大模型指令构建卷积神经网络

案例8.6:使用大模型指令构建LSTM模型进行气象时序预测

图片

图片

专题九、ChatGPT的二次开发

9、基于AI大模型的二次开发

案例9.1:基于API构建自己的本地大模型

案例9.2:基于构建的本地大模型实现ChatGPT功能、模型评价和图像生成

案例9.3:ChatGPT Store构建方法

专题十、基于ChatGPT大模型的科研绘图

1、基于AI大模型的科研绘图

1)使用大模型进行数据可视化

案例10.1:大模型科研绘图指定全集

案例10.2:使用大模型指令绘制柱状图(误差线)、散点图、相关网络图、热图、小提琴图、箱型图、雷达图、玫瑰图、气泡图、森林图、三元图、三维图等各类科研图

案例10.3:使用大模型指令对图形进行修改

图片

图片

专题十一、基于ChatGPT大模型的GIS应用

11、基于AI大模型的GIS应用

1)R语言和Python空间数据处理主要方法

2)基于AI大模型训练降尺度模型

3)基于AI大模型处理矢量、栅格数据

4)基于AI大模型处理多时相netCDF4数据

案例11.1:使用大模型绘制全球地图

案例11.2:使用大模型处理NASA气象多时相NC数据

案例11.3:使用大模型绘制全球植被类型分布图

案例11.4:使用大模型栅格数据并绘制全球植被生物量图

案例11.5:使用大模型处理遥感数据并进行时间序列分析

案例11.6:使用不同插值方法对气象数据进行插值

案例11.7:使用大模型进行空间聚类分析

案例11.8:使用大模型构建机器学习进行空间预测

图片

专题十二、基于ChatGPT大模型的项目基金助手

12、基于AI大模型的项目基金助手

1)基金申请讲解

2)基因申请助手

案例12.1:使用大模型进行项目选题和命题

案例12.2:使用大模型进行项目书写作和语言润色

案例12.3:使用大模型进行项目书概念图绘制

专题十三、基于大模型的AI绘图

13基于大模型的AI绘图

GPT DALL.E、Midjourney等AI大模型生成图片讲解

1)AI画图指令套路和参数设定

案例13.1:使用大模型进行图像识别

案例13.2:使用大模型生成图像指令合集

案例13.3:使用大模型指令生成概念图

案例13.4:使用大模型指令生成地球氮循环概念图

案例13.5:使用大模型指令生成土壤概念图

案例13.6:使用大模型指令生成病毒、植物、动物细胞结构图

案例13.7:使用大模型指令生成图片素材,从此不再缺图片素材

图片

图片

图片

关注科研技术平台获取更多资源

AI大模型引领未来智慧科研暨ChatGPT自然科学高级应用 (qq.com) 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/304196.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据结构——线性表(链式存储结构)

语言:C语言软件:Visual Studio 2022笔记书籍:数据结构——用C语言描述如有错误,感谢指正。若有侵权请联系博主 一、线性表的逻辑结构 线性表是n个类型相同的数据元素的有限序列,对n>0,除第一元素无直接…

数据仓库与数据挖掘(第三版)陈文伟思维导图1-5章作业

第一章 概述 8.基于数据仓库的决策支持系统与传统决策支持系统有哪些区别? 决策支持系统经历了4个阶段。 1.基本决策支持系统 是在运筹学单模型辅助决策的基础上发展起来的,以模型库系统为核心,以多模型和数据库的组合形成方案辅助决策。 它…

021——搭建TCP网络通信环境(c服务器python客户端)

目录 前言 服务器程序 服务器程序验证过程 客户端程序 前言 驱动开发暂时告一段落了。后面在研究一下OLED和GPS的驱动开发,并且优化前面已经移植过来的这些驱动,我的理念是在封装个逻辑处理层来处理这些驱动程序。server直接操作逻辑处理层的程序。 …

labview技术交流-如何判断一个数是否为质数

问题起源 如何判断一个数是否为质数,其实并不难,只要你知道质数的定义,按照它的定义去编写代码就可以了。但是没有思路的人可能就会一直找不到方向,所以我就简单介绍一下。 还有我想吐槽的点,labview本来就是很小众的语…

外包干了15天,技术倒退明显

先说情况,大专毕业,18年通过校招进入湖南某软件公司,干了接近6年的功能测试,今年年初,感觉自己不能够在这样下去了,长时间呆在一个舒适的环境会让一个人堕落! 而我已经在一个企业干了四年的功能…

uniapp小程序中使用video视频播放卡顿

问题:在使用uniapp小程序的video视频播放,视频已经在播放了,但是进度条没走,还是卡顿的状态(测试ios能正常使用,安卓手机会出现此问题) 在网上找了很多方法,最多的说是用:custom-cache"false",试了并没有效果,看来和我问题不一样,后来用了个简单粗暴的方法,发现是有效…

详解Spring event如何优雅实现系统业务解耦、实现原理及使用注意项

1.概述 在我们平时的项目业务系统开发过程中,一个需求功能的业务逻辑经常出现主线业务和副线业务之分。比如,在当下移动端电商app进行注册账号操作,注册成功之后会发送短信、邮箱、站内信等通知,发放红包活动抵用券,推…

配置VM开机自启动

1. 在此电脑-右键选择“管理”-服务和应用程序-服务中找到VMware Workstation Server服务(新版名称也可能是VMware自启动服务,自己找一下,服务属性里有描述信息的),将其启用并选择开机自动启动 新版参考官方文档&…

STC89C52学习笔记(八)

STC89C52学习笔记(八) 综述:本文讲述了LED点阵屏以及如何进行数据串行输入,并行输出。 一、LED点阵屏 1.介绍 LED点阵屏由多个LED组成,以矩阵形式排列(类似于矩阵键盘),像素一般…

数据库的负载均衡,高可用实验

一 高可用负载均衡集群数据库实验 1.实验拓扑图 2.实验准备(同一LAN区段)(ntp DNS) 客户端:IP:192.168.1.5 下载:MariaDB 负载均衡器:IP:192.168.1.1 下载:keepalived ipvsadm I…

3. DAX 时间函数-- DATE 日期--一生二,二生三,三生万物

在数据分析过程中,经常需要从一个数据推到另外一个数据,日期数据也是如此,需要从一个日期推到另外一个相关的日期,或者从一群日期推到另外一个相关的日期/一群相关的日期。这一期说的就是日期之间彼此推衍的函数,会比之…

OpenHarmony开发技术:【国际化】实例

国际化 如今越来的越多的应用都走向了海外,应用走向海外需要支持不同国家的语言,这就意味着应用资源文件需要支持不同语言环境下的显示。本节就介绍一下设备语言环境变更后,如何让应用支持多语言。 应用支持多语言 ArkUI开发框架对多语言的…

蓝桥杯-单片机基础16——利用定时计数中断进行动态数码管的多窗口显示

综合查阅了网络上目前能找到的所有关于此技能的代码,最终找到了下述方式比较可靠,且可以自定义任意显示的数值。 传统采用延时函数的方式实现动态数码管扫描,在题目变复杂时效果总是会不佳,因此在省赛中有必要尝试采用定时计数器中…

Kafka是什么,以及如何使用SpringBoot对接Kafka

系列文章目录 上手第一关,手把手教你安装kafka与可视化工具kafka-eagle 架构必备能力——kafka的选型对比及应用场景 Kafka存取原理与实现分析,打破面试难关 防止消息丢失与消息重复——Kafka可靠性分析及优化实践 Kafka是什么,以及如何使用…

Vue的学习之旅-part6-循环的集中写法与ES6增强语法

Vue的学习之旅-循环的集中写法与ES6增强语法 vue中的几种循环写法for循环for in 循环 for(let i in data){}for of 循环 for(let item of data){}reduce() 遍历 reduce( function( preValue, item){} , 0 ) ES6增强写法 类似语法糖简写对象简写函数简写 动态组件中使用 <kee…

dnspy逆向和de4dot脱壳

拿到一个软件&#xff0c;使用dnspy查看&#xff0c;发现反汇编后关键部分的函数名和代码有很多乱码&#xff1a; 这样的函数非常多&#xff0c;要想进一步调试和逆向&#xff0c;就只能在dnspy中看反汇编代码了&#xff0c;而无法看到c#代码&#xff0c;当时的整个逆向过程只剩…

windows安装Redis,Mongo,ES并快速基本掌握开发流程

前言 这里只是一些安装后的基础操作&#xff0c;后期会学习更加深入的操作 基础操作 前言RedisRedis启动idea集成Redisjedis技术 Mongodbwindows版Mongodb的安装idea整合Mongodb ES(Elasticsearch)ESwindows下载ES文档操作idea整合ES低级别ES整合高级别ES整合 Redis Redis是…

Java项目:基于Springboot+vue实现的中国陕西民俗前后台管理系统设计与实现(源码+数据库+毕业论文)

一、项目简介 本项目是一套基于Springbootvue实现的中国陕西民俗管理系统设计与实现设 包含&#xff1a;项目源码、数据库脚本等&#xff0c;该项目附带全部源码可作为毕设使用。 项目都经过严格调试&#xff0c;eclipse或者idea 确保可以运行&#xff01; 该系统功能完善、界…

git bash用法-批量修改文件名

在win系统上安装git bash可以使用命令行模式操作&#xff0c;比较方便 1.原始文件名 2.代码 for file in *3utr*; do mv "$file" "$(echo "$file" | sed s/3utr/5utr/)"; done3.修改后的文件名

【Web开发】jquery图片放大镜效果制作变焦镜头图片放大

jquery图片放大镜效果制作变焦镜头图片放大实现 整体步骤流程&#xff1a; 1. 前端html实现 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns"…