ChatGPT: 从GPT-3.5到GPT-4,探索语言模型的演进之路

ChatGPT: 从GPT-3.5到GPT-4,探索语言模型的演进之路

chatgpt

引言

chatgpt

  • 人工智能语言模型的演进
    随着人工智能的快速发展,语言模型作为自然语言处理领域的一项重要技术也在不断演进。从最初的基于规则的系统,到基于统计的模型,再到近年来的深度学习模型,语言模型的能力不断提升,推动了人工智能在对话和交流领域的广泛应用。
  • 探索 ChatGPT 的演进之路
    在众多的语言模型中,ChatGPT 作为一种基于生成对抗网络(GANs)的对话模型,引起了广泛的关注和兴趣。ChatGPT 是 OpenAI 公司基于 GPT(Generative Pre-trained Transformer)模型的一种变种,旨在通过让计算机生成逼真、有趣和有趣的对话来提升人机对话体验。本文将深入探讨 ChatGPT 的演进之路,从 GPT-3.5 到未来可能的 GPT-4,探讨其在技术、应用和社会领域的发展趋势和潜在影响。

GPT-3.5: ChatGPT 的前身

openAI

A. 介绍 GPT-3.5 的概念和特点

GPT-3.5 是 GPT(Generative Pre-trained Transformer)模型的一个版本,是 OpenAI 公司在 GPT-3 模型基础上进行改进和优化而得到的。GPT-3.5 拥有巨大的模型规模和参数量,具有更强大的语言生成和对话生成能力。它采用了基于 Transformer 架构的深度神经网络,通过在大规模语料库上进行预训练和微调,可以生成高质量、流利、连贯的文本。

B. 分析 GPT-3.5 的优点和不足

1. 优点

  • 高度生成性:GPT-3.5 可以生成丰富、多样的对话内容,具有较强的创造性和表达能力。
  • 上下文理解:GPT-3.5 可以对上下文进行有效的理解和建模,能够根据对话历史生成连贯的回复。
  • 大规模参数:GPT-3.5 模型规模巨大,拥有多达数百亿的参数量,使得其在生成对话方面表现出色。
    2. 不足
  • 缺乏实时性:GPT-3.5 在生成对话时可能存在较高的延迟,不适合一些实时性要求较高的应用场景。
  • 可控性不足:GPT-3.5 在生成对话内容时缺乏足够的可控性,可能生成一些不合适或不符合需求的内容。
  • 数据隐私和安全:由于 GPT-3.5 在大规模语料库上进行预训练,涉及大量用户数据,因此可能涉及数据隐私和安全的风险。
    尽管 GPT-3.5 在语言生成和对话生成方面取得了显著的进展,但仍然存在一些局限性和挑战,这促使了 ChatGPT 模型的进一步发展和演进。在接下来的部分,我们将深入探讨 ChatGPT 在不同领域的应用场景,以及其在未来可能的发展趋势和潜在影响。

GPT-4: ChatGPT 的未来之路

gpt

A. 介绍 GPT-4 的预计特点和功能

GPT-4 是 GPT 模型的下一代版本,预计将在 GPT-3.5 的基础上进一步改进和演进。虽然尚未发布,但根据已有的研究和预测,GPT-4 可能具有以下特点和功能:

  • 更强大的生成能力:GPT-4 可能进一步提升语言生成和对话生成的能力,生成更加自然、流利、具有情感和个性化的文本。
  • 更高的实时性:GPT-4 可能通过优化模型结构和算法,减少生成对话的延迟,更适合实时性要求较高的应用场景。
  • 更强的可控性:GPT-4 可能引入更多的可控生成技术,使用户能够更精细地控制生成内容的风格、语气、情感等,以满足不同需求。
  • 更好的上下文理解:GPT-4 可能进一步改进对上下文的理解和建模能力,能够更好地捕捉对话历史信息,生成更连贯、一致的回复。

B. 探讨 GPT-4 可能带来的技术和应用领域的变革

  • 自然语言生成:GPT-4 的强大生成能力有望在自然语言生成领域带来革命性的变革,包括内容创作、广告文案、社交媒体自动化等应用。
  • 客户服务和支持:ChatGPT 可以应用于客户服务和支持领域,提供更智能、个性化的客户互动体验,减少人工客服工作负担。
  • 教育和培训:GPT-4 可以用于教育和培训领域,通过与学生进行对话互动,提供个性化的教学辅助和学术支持。
  • 营销和广告:GPT-4 可以应用于广告和营销领域,通过生成优秀的广告文案、推广语言等,提升广告效果和用户体验。
  • 医疗和健康:ChatGPT 可以用于医疗和健康领域,提供医疗咨询、健康管理、病情诊断等服务。
    GPT-4 的发展和应用有望在多个领域带来革命性的变革,推动人工智能对话模型技术的不断演进和应用拓展。随着 ChatGPT 技术的不断发展,我们可以预见到在未来的应用场景中,人工智能对话模型将在各个领域发挥更加重要的作用。

对于开发者和研究者来说,持续关注 ChatGPT 及人工智能对话模型领域的最新进展和应用案例是非常重要的。随着技术的不断演进,新的算法、模型和应用案例将不断涌现,为各行各业带来更多的机会和挑战。了解最新的研究和应用,学习和掌握相关的技术和工具,将有助于开发者和研究者在实际应用中充分发挥 ChatGPT 及人工智能对话模型的优势。

同时,对于普通用户来说,对 ChatGPT 和人工智能对话模型保持兴趣和热情也是非常重要的。作为一种前沿技术,人工智能对话模型在日常生活中的应用越来越广泛,涉及到语言生成、对话互动、智能助理等多个领域。了解这些技术的发展和应用,掌握如何与 ChatGPT 进行交互和使用,将有助于普通用户在日常生活中更好地利用人工智能技术,提升效率和体验。

在结束语中,我们要强调 ChatGPT 作为人工智能对话模型的前沿技术和应用的重要性。通过不断的演进和应用拓展,ChatGPT 及人工智能对话模型将在未来发挥越来越重要的作用,推动人工智能技术在各个领域的发展。我们鼓励读者持续关注 ChatGPT 及人工智能对话模型领域的最新进展和应用案例,激发读者对 ChatGPT 和人工智能对话模型的兴趣和热情,共同见证人工智能技术的未来发展。

GPT 模型的技术创新

gpt3

A. 分析 GPT 模型的核心技术

作为一种自然语言处理领域的前沿技术,GPT 模型在其演进过程中引入了许多核心技术,为其卓越的性能和应用效果奠定了基础。这些核心技术包括但不限于:

  1. Transformer 架构:GPT 模型采用了 Transformer 架构,这是一种基于自注意力机制的神经网络架构,能够处理长距离依赖关系,并在处理序列数据时取得了显著的性能提升。

  2. 多层堆叠结构:GPT 模型通常由多层堆叠的神经网络组成,每一层都可以独立地学习特征表示,并通过残差连接和层归一化来加速训练过程和提升模型性能。

  3. 预训练和微调策略:GPT 模型采用了预训练和微调策略,通过在大规模文本数据上进行预训练,然后在特定任务上进行微调,从而能够获得更好的泛化性能和适应性。
    gpt3

B. 探讨 GPT 模型的技术创新和突破

随着 GPT 模型的不断演进,许多技术创新和突破为其性能的提升和应用拓展做出了贡献。以下是一些可能的技术创新和突破方向:

  1. 模型规模的增大:GPT-3 模型采用了巨大的模型规模,包含了 1750 亿个参数,从而在多个自然语言处理任务上取得了卓越的性能。未来,随着计算资源的不断增加,GPT 模型的规模可能会进一步增大,从而进一步提升模型的性能和应用能力。

  2. 多模态融合:除了文本数据外,GPT 模型也可以通过引入图像、音频、视频等多模态数据来进行训练和应用,从而能够在更丰富的应用场景中发挥作用,如图像描述生成、视频字幕生成等。

  3. 迁移学习和跨语言处理:GPT 模型可以通过迁移学习技术在不同领域、不同任务之间进行知识迁移,从而能够更快速地适应新的任务和领域。此外,GPT 模型还可以通过跨语言处理技术实现多语言的处理能力,从而能够在跨语言场景中发挥作用,如多语言机器翻译、跨语言情感分析等。

  4. 对抗性训练:引入对抗性训练的方法可以使GPT模型更加鲁棒和安全,从而能够对抗输入数据中的噪声和干扰,提高模型的稳健性和可靠性。

  5. 强化学习的融合:将强化学习技术与GPT模型结合,可以使模型在生成文本时更具交互性和自适应性,从而能够生成更加合理和具有实际应用场景的文本。

  6. 长文本处理:目前GPT模型对长文本的处理还存在一定的限制,未来可以进一步优化模型的结构和训练策略,以便更好地处理长文本的生成和理解任务。

这些技术创新和突破将进一步推动GPT模型的演进,使其在更多领域和任务中发挥更大的作用,从而不断推动自然语言处理技术的发展和应用。

gpt3

GPT 模型的应用实践

A. 介绍 GPT 模型在不同领域的应用案例

GPT模型作为一种强大的语言生成模型,已经在许多领域得到了广泛应用。以下是一些GPT模型在不同领域的应用案例:

  1. 企业应用:GPT模型在企业领域被应用于自动化客户服务、虚拟助理、内容生成等任务。例如,许多公司利用GPT模型开发了智能客服系统,能够自动处理客户的查询和问题,提供高效的客户服务体验。

  2. 学术界应用:GPT模型在学术界的应用也越来越广泛,包括科研论文的自动摘要生成、学术写作辅助、科学数据分析等任务。例如,GPT模型可以帮助研究人员生成论文摘要、总结和展望,减轻研究人员的写作负担,提高科研效率。

  3. 社会组织应用:GPT模型在社会组织领域的应用也逐渐增多,包括社会媒体内容生成、舆情分析、社会问题解决等任务。例如,GPT模型可以生成社交媒体上的内容,帮助社会组织在社交媒体上推广和传播信息,提升影响力。

B. 分析这些应用案例的成功经验和挑战

这些应用案例中,GPT模型在许多领域展现出了强大的语言生成和应用能力,为相关领域带来了很多的便利和创新。其成功经验主要包括以下几点:

  1. 文本生成能力:GPT模型在生成文本方面具有很高的自然度和流畅性,能够生成质量较高的文本内容,满足各种实际应用场景的需求。

  2. 上下文理解能力:GPT模型能够理解输入文本的上下文信息,从而能够生成更加准确和合理的文本内容,使得生成的文本更加贴近实际语境。

  3. 可定制性:GPT模型可以通过在大量数据上进行预训练和微调,从而能够为不同领域和任务定制化生成文本,满足不同应用场景的需求。

然而,这些应用案例也面临一些挑战:

  1. 模型可解释性:GPT模型生成的文本内容难以解释其生成过程和生成依据,可能导致生成的文本不够可信和可解释,对于一些对模型的解释性要求较高的应用场景可能存在局限性。

  2. 模型的数据和隐私安全:GPT模型需要大量的训练数据来获得高质量的文本生成能力,但这也带来了对于数据安全和隐私保护的考虑。在应用实践中,如何保护用户数据和隐私成为了一个重要的问题。

  3. 模型的偏差和倾向性:由于GPT模型的训练数据主要来源于互联网,其中可能存在各种偏见和倾向性,因此生成的文本内容可能带有一定的偏见和倾向性。在一些涉及到敏感领域的应用场景中,这可能会导致潜在的问题和争议。

  4. 模型的可控性:GPT模型生成的文本内容可能难以控制,可能会生成不符合社会、法律、伦理等规范的内容,从而引发一系列的问题。如何保障模型的可控性,使得生成的文本内容符合相关规范和要求,也是一个需要解决的问题。

总的来说,GPT模型在应用实践中取得了显著的成功,但也面临一些技术和应用挑战。随着技术的不断发展和完善,相信GPT模型在未来的应用实践中将会取得更加广泛和深入的应用,并为各个领域带来更多的创新和改变。

GPT 模型的未来展望

gpt4 in bing

A. 探讨 GPT 模型未来的发展趋势和可能面临的挑战

GPT模型作为语言模型领域的先驱,其未来发展趋势可能包括以下几个方面:

  1. 模型规模和性能的持续提升:随着硬件技术的不断发展,未来GPT模型的规模和性能有望继续提升。更大规模的模型可以更好地捕捉文本数据的复杂性和多样性,从而生成更加质量高、语义丰富的文本内容。

  2. 模型的多模态融合:未来的GPT模型可能会进一步融合多模态数据,如图像、音频、视频等,从而实现更加丰富和多样化的文本生成。这将为多媒体领域带来更多创新和应用可能性。

  3. 模型的可解释性和可控性的提升:随着对AI模型解释性和可控性的要求逐渐增加,未来的GPT模型可能会在这方面有所提升。研究人员可能会探索新的方法和技术,使得GPT模型生成的文本内容更加可解释、可控,并且符合特定的规范和要求。

然而,GPT模型未来的发展也可能面临一些挑战:

  1. 数据隐私和安全的问题:随着对用户数据和隐私保护的要求不断提高,未来的GPT模型可能需要面对更加严格的数据隐私和安全标准。如何在模型训练和应用中保护用户数据和隐私将是一个持续的挑战。

  2. 模型的社会和伦理问题:GPT模型生成的文本内容可能带有偏见、倾向性或不符合社会、法律、伦理等规范的问题,这可能引发社会和伦理上的争议。未来的GPT模型应用需要更加关注社会和伦理问题,并采取相应的措施来解决这些问题。
    new chatgpt

B. 分析 GPT 模型的未来应用场景和可能的经济和社会影响

GPT模型作为一种强大的语言生成技术,其未来应用场景可能非常广泛。以下是一些可能的应用场景:

  1. 内容生成和创意产生:GPT模型可以在广告、媒体、文化创意等领域生成高质量的文本内容,从而帮助企业和创作者快速生成大量吸引人的广告语、文章、剧本等,提高内容生产的效率和质量。

  2. 语言辅助工具:GPT模型可以作为一种强大的语言辅助工具,帮助人们在写作、翻译、编辑等任务中提供实时的语言生成和编辑建议,从而提高语言表达的准确性和流畅性。

  3. 智能客服和在线助手:GPT模型可以应用于在线客服、客户服务、虚拟助手等领域,通过生成自然语言对话与用户进行交互,提供个性化的服务和支持。

  4. 教育和培训:GPT模型可以在教育和培训领域中应用,帮助学生生成学术文章、做题答案解析等,提供个性化的学习辅助。

  5. 医疗和健康:GPT模型可以辅助医生和医疗专业人员生成医学报告、诊断建议等,帮助提高医疗服务的效率和准确性。

这些应用场景可能会对经济和社会产生深远的影响,包括但不限于以下几个方面:

  1. 提高生产效率和创新能力:GPT模型的应用可以帮助企业和创作者快速生成高质量的文本内容,提高生产效率,激发创新灵感,从而推动产业升级和创新发展。

  2. 优化用户体验和服务质量:GPT模型可以作为智能客服和在线助手,提供个性化、高效的服务,优化用户体验,提升服务质量,从而提升企业的竞争力和用户满意度。

  3. 促进教育和医疗资源的普惠性:GPT模型的应用可以帮助提供个性化的教育和医疗辅助服务,从而促进教育和医疗资源的普惠性,让更多的人受益。

然而,GPT模型的未来应用也可能面临一些潜在的经济和社会风险,如人工智能在劳动力市场中的替代作用、信息真实性和可信性的挑战、技术滥用和隐私风险等。因此,在推动GPT模型的应用发展的同时,需要引入有效的监管和治理机制,确保其在经济和社会中发挥积极作用,并最大限度地减少潜在的负面影响。以下是GPT模型未来可能面临的一些挑战:
chat-gpt

  1. 技术可信性和信息真实性:GPT模型生成的文本可能存在虚假信息、误导性内容或者偏见,导致信息可信度和真实性的挑战。在未来,如何确保GPT模型生成的内容真实可信,成为一个重要的问题。

  2. 治理和监管:GPT模型的广泛应用可能涉及到法律、伦理和隐私等方面的问题。如何建立有效的治理和监管机制,保护用户权益,防止技术滥用和数据泄露,是未来需要解决的难题。

  3. 社会影响和劳动力市场:GPT模型在内容生成和语言辅助工具方面的应用可能对传统写作、编辑、翻译等职业产生替代作用,对劳动力市场产生影响。如何平衡技术发展和人类就业的关系,确保社会公平和可持续发展,是未来需要解决的问题。

  4. 数据隐私和安全:GPT模型的训练和应用需要大量的数据支持,涉及到用户隐私和数据安全的问题。如何保护用户的个人信息和数据隐私,防止数据泄露和滥用,是未来需要重视的问题。

  5. 环境可持续性:GPT模型的训练需要大量的计算资源和能源消耗,可能对环境产生负面影响。未来需要考虑如何推动人工智能技术的环境可持续性,减少能源消耗和碳足迹。

总的来说,GPT模型在未来可能在广泛的应用场景中发挥重要作用,但也面临一系列的挑战。需要多方共同努力,引入有效的治理和监管机制,保障技术的可信性、信息的真实性,保护用户的隐私和数据安全,确保技术对经济和社会产生积极影响,推动人工智能的可持续发展。
gpt3-gpt4

结语

本文对GPT模型进行了详细的介绍,从GPT-3.5作为ChatGPT的前身开始,到GPT-4的未来之路,再到GPT模型的技术创新、应用实践以及未来展望,都涵盖了这一语言模型在人工智能领域的重要性和潜在的应用价值。

GPT模型作为目前领先的语言模型之一,具有强大的文本生成能力和语言理解能力,广泛应用于自然语言处理、机器翻译、智能写作、智能客服等领域。其在许多应用场景中都取得了显著的成果,并且不断进行技术创新和演进,推动了人工智能技术的发展。

然而,GPT模型也面临一系列的挑战,包括技术可信性、信息真实性、治理和监管、社会影响、数据隐私和安全、环境可持续性等方面的问题。为了确保GPT模型的可持续发展和应用产生正面影响,需要多方共同努力,引入有效的治理和监管机制,保障技术的可信性和信息的真实性,保护用户的隐私和数据安全,推动人工智能的可持续发展。

最后,鼓励读者持续关注GPT模型在语言模型领域的最新进展和应用领域的应用案例。随着技术的不断演进和应用场景的不断扩展,GPT模型将继续在语言处理领域发挥重要作用,并对社会、经济和科技产生深远影响。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/30431.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

PCM音频文件的制作

一、PCM编码简介 PCM是英文Pulse-code modulation的缩写,中文译名是脉冲编码调制。它是70年代末发展起来的,记录媒体之一的CD,在80年代初由飞利浦和索尼公司共同推出。脉码调制的音频格式也被DVD-A所采用,它支持立体声和5…

案例分享:基于预训练大模型的AI自动标注

从自动化时代到智能化时代,人工智能潜在的价值规模迅速扩张。如何将潜在的应用价值落到现实场景是摆在一众AI企业面前亟待破解的难题。 数据资源场景单一且有限、算力资源存在上限且成本高企、高端人才稀缺等问题无一不在阻碍AI产业的规模化商业落地。 而伴随着以…

AI文本生成软件选哪个?看看这些软件推荐吧

最近几个月的时间内AI智能技术逐渐向大众开放,许多人都在使用AI智能进行一些创作 但是许多小伙伴依然不知道该如何使用AI来智能生成文本。那么大家想知道有哪些AI文本生成软件吗?看看下面几款大家常用的AI文本生成软件的介绍吧。 1.“AI写作宝” 软件介…

LLMs的自动化工具系统(HuggingGPT、AutoGPT、WebGPT、WebCPM)

在前面两篇博文中已经粗略介绍了增强语言模型和Tool Learning,本篇文章看四篇代表性的自动化框架,HuggingGPT、AutoGPT、WebGPT、WebCPM。 Augmented Language Models(增强语言模型)Toolformer and Tool Learning(LLM…

代码恐怖故事:隐藏在复杂代码库中的恐怖秘密

本文讲述了开发者们在复杂代码库中工作的经历和教训,包括代码复杂性带来的问题、架构决策、第三方库引发的意外问题以及令人恐慌的编程错误,以及如何处理这些挑战。 原文链接:https://digma.ai/blog/coding-horrors-tales-of-codebase-comple…

【ChatGPT助我开发】利用ChatGPT编写基于Matlab的SVM的蔬菜分类项目

序言 从去年12月份开始用ChatGPT,一直被惊艳到,然后问一些奇怪的问题,到现在助力开发,我发现合适的提示词(Prompt)会很大程度影响到生成的质量,我在开发的过程中也会逐渐完善修改,最…

matlab绘图常用函数及代码

1、绘图:plot /semilogy /loglog /scatter figure(1); subplot(1,2,1);%子图 axis([0 10 10^-5 10^-1]);%限制作图范围,x轴0~10,y轴10^-5到10^-1 plot(X,Y,Color,[R G B],LineStyle,-,Marker,o,LineWidth,1); hold on; grid on;%显示网格 &…

HR怀疑程序员简历造假,随后的做法引起网友热议:过分了

简历可以说是求职过程中最重要的一份材料,因此不少人对简历都精心准备,以便全面地展示自己。对企业来说,简历最重要的一点便是真实。可以说所有公司对简历造假都是保持零容忍的态度。最近,一位HR网友在职场社区分享了他怀疑程序员…

程序员简历优化之道

作者:安晓辉 声明:原创文章,禁止各种形式的转载。 为什么你投十份简历,只有一两家公司约你?又或者为什么你每投一份简历都能获得面试机会? 最根本的原因,就是一方在汲汲渴求,而恰恰…

别再胡乱写简历了,一份适合普通大众的简历模版,送给大家

今天我们就来聊一聊在校招时,简历该如何写的问题。说实话,对于简历的书写方式,可能不同的人会有不同的见解,并且不同的面试官/HR在筛选的时候也会有所差异,所以在我看来,不存在一种绝对稳的简历模版。 我在…

聊求职:写简历的大原则与小技巧

简历,是求职者向未来雇主展示专业技能和职业素养的自我推销工具,是赢得面试机会的敲门砖。如果没有面试邀约,大多只有两种可能:要么是简历写的太屎了,要么是简历投的太屎了。所以,当没有面试机会的时候&…

用 Markdown 写炫酷简历,助力跳槽换工作

大家好我是徐小夕。 今天给大家来介绍一个简历制作神器,是我的朋友秋风开发的。这个项目是一款免费在线简历制作工具,通过将书写的Markdown 和选择的主题快速转化不同风格的简历, 同时还可以一键复用其他人做的优秀的简历, 助力求职者快速制作精美的简历…

分享162个助理类简历模板,总有一款适合您

分享1626个助理类简历模板,总有一款适合您 162个助理类简历模板下载链接:https://pan.baidu.com/s/1Uy3eXPz9D-wK-l7z3KDIWQ?pwdl139 提取码:l139 Python采集代码下载链接:采集代码.zip - 蓝奏云 class ChinaZJsSelenium:ba…

掌握这些写简历投简历的“黑魔法”,告别简历已读不回!

“哎,我还能找到工作吗?” 这是最近加我微信的好友,问的最多的一句话。 太卷了 最近加我微信的朋友很多,我都很奇怪,最近也没怎么发文章,怎么会有这么多人加我。 大概就是因为太卷了,之前写的…

简历优化实战案例01:工作经历篇

大家好,我是小谭。 最近,我在帮一位求职者修改简历时,发现一些求职者常犯的简历错误。在征得求职者同意后,我粘出来,同大家分享和交流,期望通过此分享,让大家了解写简历的常见坑和注意点。 本…

分享111个助理类简历模板,总有一款适合您

分享111个助理类简历模板,总有一款适合您 111个助理类简历模板下载链接:https://pan.baidu.com/s/1JafYuLPQMmq37K4V0wiqWA?pwd8y54 提取码:8y54 Python采集代码下载链接:https://wwgn.lanzoul.com/iKGwb0kye3wj 设计师助理…

找工作的程序员应该这样优化简历【内附120套优质简历模板】

《花千骨》一剧,白子画为什么收花千骨为徒? 《琅琊榜》中,梅长苏为什么选靖王而弃太子、誉王? 《泰坦尼克号》里,杰克和露丝为什么会一见钟情? 王子基特为什么会选择灰姑娘辛德瑞拉? 这些问题乍…

易语言易语言浏览器html5,易语言创建的浏览器源码

易语言创建的浏览器源码系统结构:事件_编辑框1_获得焦点,事件_选择夹1_鼠标右键按下,子程序_删除页面,事件_窗口1_尺寸被改变,事件_选择夹1_子夹被改变,子程序_添加页面,事件_浏览器_即将跳转,事件_浏览器_即将打开新窗口3,事件_浏览器_标题被改变,事件_编辑框1_按下某键,SkinH…

易语言 普通填表 html5,易语言网页填表源码

易语言网页填表源码系统结构:passport_tianya,passport_xinlang,passport_baidu,Automatic_modification,Insert_text,Loadconfiguration, 窗口程序集1 || ||------_按钮8_被单击 || ||------_按钮11_被单击 || ||------passport_tianya || ||------passport_xinlang || ||----…

易语言启动局域网计算机程序,易语言局域网计算机监控源码

易语言局域网计算机监控源码系统结构:取计算机列表,弹出提示窗,上下线, 窗口程序集1 || ||------__启动窗口_创建完毕 || ||------取计算机列表 || ||------_选择框1_被单击 || ||------_时钟1_周期事件 || ||------_按钮1_被单击 || ||------_按钮2_被单击 || ||------__启动窗…