【MYSQL锁】透彻地理解MYSQL锁

🔥作者主页:小林同学的学习笔录

🔥mysql专栏:小林同学的专栏

目录

1.锁

1.1  概述 

1.2  全局锁

1.2.1  语法

1.2.1.1   加全局锁

1.2.1.2   数据备份

1.2.1.3   释放锁

1.2.1.4   特点

1.2.1.5   演示

1.3   表级锁

1.3.1  介绍

1.3.2  表锁

1.3.2.1  语法

1.3.2.2  特点

1.3.2.3  结论

1.3.3  元数据锁

1.3.4  意向锁

1.3.4.1  介绍

1.3.4.2  分类

1.3.4.3  演示

1.4  行级锁

1.4.1  介绍

1.4.2  行锁

1.4.3  演示

1.4.4  间隙锁&临键锁

1.4.4.1  示例演示

1.锁


1.1  概述 


锁是计算机协调多个进程或线程并发访问某一资源的机制。在数据库中,除传统的计算资源

(CPU、RAM、I/O)的争用以外,数据也是一种供许多用户共享的资源。

如何保证数据并发访问的一致性、有效性是所有数据库必须解决的一个问题,锁冲突也是影响数据

库并发访问性能的一个重要因素。从这个角度来说,锁对数据库而言显得尤其重要,也更加复杂。

MySQL中的锁,按照锁的力度分,分为以下三类:

  • 全局锁:锁定数据库中的所有表。
  • 表级锁:每次操作锁住整张表。
  • 行级锁:每次操作锁住对应的行数据。


在介绍锁之前先回顾一下DML、DQL、DDL分别代表什么?


数据操作语言(DML):DML 用于对数据库中的数据执行操作,例如插入、更新、删除、查询数

据,简称增删改查,尽管 SELECT 语句通常被归类为 DQL,但它也可以在某种程度上被认为是

DML,因为它允许检索数据。


数据查询语言(DQL):DQL 用于从数据库中检索数据。它专门用于执行查询操作


数据定义语言(DDL):DDL 用于定义数据库的结构,包括创建、修改和删除数据库对象,

例如(表、索引、视图等)。DDL 的操作影响数据库的整体结构。

1.2  全局锁


全局锁(Global Lock)是数据库管理系统中的一种锁定机制,通常用于锁定整个数据库实例,而

不是单个表或行。全局锁可以阻止对整个数据库的写入操作,但通常不会阻止读取操作。这种锁定

机制在某些情况下可以用于数据库备份、恢复或维护操作。

其典型的使用场景是做全库的逻辑备份,对所有的表进行锁定,从而获取一致性视图,保证数据的

完整性.

为什么全库逻辑备份,就需要加全就锁呢?

①.先来分析一下不加全局锁,可能存在的问题。

假设在数据库中存在这样三张表: tb_stock 库存表,tb_order 订单表,tb_orderlog 订单日志表。

在进行数据备份时,先备份了tb_stock库存表。

然后接下来,在业务系统中,执行了下单操作,扣减库存,生成订单(更新tb_stock表,插入

tb_order表)。

然后再执行备份 tb_order表的逻辑。

业务中执行插入订单日志操作。

最后,又备份了tb_orderlog表。

此时备份出来的数据,是存在问题的。因为备份出来的数据,tb_stock表与tb_order表的数据不一

致(有最新操作的订单信息,但是库存数没减)。

②.再来分析一下加了全局锁后的情况

对数据库进行进行逻辑备份之前,先对整个数据库加上全局锁,一旦加了全局锁之后,其他的

DDL、DML全部都处于阻塞状态,但是可以执行DQL语句,也就是处于只读状态,而数据备份就

是查询操作。那么数据在进行逻辑备份的过程中,数据库中的数据就是不会发生变化的,这样就保

证了数据的一致性和完整性。

1.2.1  语法


1.2.1.1   加全局锁

flush tables with read lock ;

1.2.1.2   数据备份


mysqldump -uroot –p1234 itcast > itcast.sql

mysqldump -uXxx –pXxx 数据库名 > 磁盘地址  +  数据库名.sql

例如:mysqldump -uXxx –pXxx db_01 > D:/db_01

1.2.1.3   释放锁


unlock tables ;

1.2.1.4   特点


数据库中加全局锁,是一个比较重的操作,存在以下问题:

如果在主库上备份,那么在备份期间都不能执行更新,业务基本上就得停摆。

如果在从库上备份,那么在备份期间从库不能执行主库同步过来的二进制日志(binlog),会导致

主从延迟。


在InnoDB引擎中,我们可以在备份时加上参数 --single-transaction 参数来完成不加锁的一致性数

据备份。

mysqldump --single-transaction -uroot –p123456 itcast > itcast.sql

1.2.1.5   演示

开启两个命令行

第一个命令行


第二个命令行

会处于阻塞状态,光标一直在闪,只有全局锁被释放才可以执行相应的操作

1.3   表级锁


1.3.1  介绍


表级锁,每次操作锁住整张表锁定力度大,发生锁冲突的概率最高,并发度最低。应用在

MyISAM、InnoDB、BDB等存储引擎中。


对于表级锁,主要分为以下三类:

  • 表锁
  • 元数据锁(meta data lock,MDL)
  • 意向锁


1.3.2  表锁


对于表锁,分为两类:

①.表共享读锁(read lock)

②.表独占写锁(write lock)


1.3.2.1  语法


加锁:lock tables 表名... read/write。

释放锁:unlock tables /  客户端断开连接 。


1.3.2.2  特点


①.读锁

左侧为客户端一,对指定表加了读锁,不会影响右侧客户端二的读,但是会阻塞右侧客户端的写。


②.写锁

左侧为客户端一,对指定表加了写锁,会阻塞右侧客户端的读和写。


1.3.2.3  结论


读锁不会阻塞其他客户端的读,但是会阻塞写。写锁既会阻塞其他客户端的读,又会阻塞其他客户

端的写。


1.3.3  元数据锁


MDL(meta data lock)加锁过程是系统自动控制,无需显式使用,在访问一张表的时候会自动加

上。MDL锁主要作用是维护表元数据的数据一致性,在表上有活动事务的时候,不可以对元数据进

行写入操作为了避免DML与DDL冲突,保证读写的正确性。

注意:有元数据锁只有在事务开启,才有的锁,当事务提交之后相应的锁会被释放.


这里的元数据,大家可以简单理解为就是一张表的表结构。 也就是说,某一张表涉及到未提交的

事务时,是不能够修改这张表的表结构的。

在MySQL5.5中引入了MDL,当对一张表进行增删改查的时候,加MDL读锁(共享);当对表结构进

行变更操作的时候,加MDL写锁(排他),另外共享锁是兼容的。


常见的SQL操作时,所添加的元数据锁:


1.3.3.1  演示


①.当执行SELECT、INSERT、UPDATE、DELETE等语句时,添加的是元数据共享锁

(SHARED_READ / SHARED_WRITE),之间是兼容的,所以不会出现阻塞状态。


②.当执行SELECT语句时,添加的是元数据共享锁(SHARED_READ),会阻塞元数据排他锁

(EXCLUSIVE),之间是互斥的,所以出现了阻塞状态。

我们可以通过下面的SQL,来查看数据库中的元数据锁的情况:

select object_type,object_schema,object_name,lock_type,lock_duration fromperformance_schema.metadata_locks ;


1.3.4  意向锁


1.3.4.1  介绍


为了避免DML在执行时,加的行锁与表锁的冲突在InnoDB中引入了意向锁,使得表锁不用检查

每行数据是否加行锁,使用意向锁来减少表锁的检查。

假如没有意向锁,客户端一对表加了行锁后,客户端二如何给表加表锁呢?

来通过示意图简单分析一下:

首先客户端一,开启一个事务,然后执行DML操作,在执行DML语句时,会对涉及到的行加锁。

当客户端二,想对这张表加表锁时,会检查当前表是否有对应的行锁,如果没有,则添加表锁,此

时就会从第一行数据,检查到最后一行数据,效率较低。

有了意向锁之后 :

客户端一,在执行DML操作时,会对涉及的行加行锁,同时也会对该表加上意向锁。

而其他客户端,在对这张表加表锁的时候,会根据该表上所加的意向锁来判定是否可以成功加上表

锁,而不用逐行判断行锁情况了。


1.3.4.2  分类


①.意向共享锁(IS): 由语句select ... lock in share mode添加 。 与 表锁共享锁(read)兼容,与表锁

排他锁(write)互斥。

②.意向排他锁(IX): 由insert、update、delete、select...for update添加 。与表锁共享锁(read)及排

他锁(write)都互斥,意向锁之间不会互斥。


一旦事务提交了,意向共享锁、意向排他锁,都会自动释放。


可以通过以下SQL,查看意向锁及行锁的加锁情况:

select object_schema,object_name,index_name,lock_type,lock_mode,lock_data fromperformance_schema.data_locks;


1.3.4.3  演示


①.意向共享锁与表读锁是兼容的

由于select语句不会自动加行锁,需要手动加行锁

select * from score where id = 1 lock in share mode;

②.意向排他锁与表读锁、写锁都是互斥的

insert、update、delete语句会自动加行锁


1.4  行级锁


1.4.1  介绍


行级锁,每次操作锁住对应的行数据。锁定力度最小,发生锁冲突的概率最低,并发度最高。应用

在InnoDB存储引擎中。

InnoDB的数据是基于索引组织的,行锁是通过对索引上的索引项加锁来实现的,而不是对记录加

的锁。对于行级锁,主要分为以下三类:

①.行锁(Record Lock):锁定单个行记录的锁,防止其他事务对此行进行update和delete。

在RC、RR隔离级别下都支持。

②.间隙锁(Gap Lock):锁定索引记录间隙(不含该记录),确保索引记录间隙不变,防止其他

事务在这个间隙进行insert,产生幻读。在RR隔离级别下都支持。

③.临键锁(Next-Key Lock):行锁和间隙锁组合,同时锁住数据,并锁住数据前面的间隙Gap。

在RR隔离级别下支持。

1.4.2  行锁


共享锁(S):允许一个事务去读一行,阻止其他事务获得相同数据集的排它锁.就是允许一个事务

select,另外事务可以获得相同数据的共享锁,但是不能获得相同数据集的排他锁。


排他锁(X):允许获取排他锁的事务更新数据,阻止其他事务获得相同数据集的共享锁和排他

锁。


两种行锁的兼容情况如下:

常见的SQL语句,在执行时,所加的行锁如下:


1.4.3  演示


①.针对唯一索引进行检索时,对已存在的记录进行等值匹配时,将会自动优化为行锁。

②.InnoDB的行锁是针对于索引加的锁,不通过索引条件检索数据,那么InnoDB将对表中的所有记录加锁,此时 就会升级为表锁。


可以通过以下SQL,查看意向锁及行锁的加锁情况:

select object_schema,object_name,index_name,lock_type,lock_mode,lock_data fromperformance_schema.data_locks;

  • 加共享锁,共享锁与共享锁之间兼容。
  • 共享锁与排他锁之间互斥。

  • 排它锁与排他锁之间互斥

  • 无索引行锁升级为表锁

注意:这里面经常会手动开启事务的原因是为了演示效果,如果是自动开启事务会自动提交事务,

会把锁给释放,因此看不出效果,但是原理还是一样的.

1.4.4  间隙锁&临键锁


默认情况下,InnoDB在 REPEATABLE READ事务隔离级别运行,InnoDB使用 next-key 锁进行搜

索和索引扫描,以防止幻读

①.索引上的等值查询(唯一索引),给不存在的记录加锁时, 优化为间隙锁 。


②.索引上的等值查询(非唯一普通索引),向右遍历时最后一个值不满足查询需求时,next-key lock

退化为间隙锁。

③.索引上的范围查询(唯一索引)--会访问到不满足条件的第一个值为止。


注意:间隙锁唯一目的是防止其他事务插入间隙。间隙锁可以共存,一个事务采用的间隙锁不会阻

止另一个事务在同一间隙上采用间隙锁。


1.4.4.1  示例演示


①.索引上的等值查询(唯一索引),给不存在的记录加锁时, 优化为间隙锁


②.索引上的等值查询(非唯一普通索引),向右遍历时最后一个值不满足查询需求时,next-key lock

退化为间隙锁。

介绍分析一下:


我们知道InnoDB的B+树索引,叶子节点是有序的双向链表。 假如,我们要根据这个二级索引查询

值为18的数据,并加上共享锁,我们是只锁定18这一行就可以了吗? 

并不是,因为是非唯一索引,这个结构中可能有多个18的存在,所以在加锁时会继续往后找,找

到一个不满足条件的值(当前案例中也就是29)。此时会对18加临键锁,并对29之前的间隙加锁

这里的临键锁(行锁+间隙锁),还会锁住age=3的行,并且还会锁住主键为1-3之间的间隙


③.索引上的范围查询(唯一索引)--会访问到不满足条件的第一个值为止

所以数据库数据在加锁是,就是将19加了行锁,25的临键锁(包含25及25之前的间隙),正无穷

的临键锁(正无穷及之前的间隙)。

麒麟而非淇淋,不是干货不制作https://blog.csdn.net/2301_77358195

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/304633.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

03-JAVA设计模式-建造者模式

建造者模式 什么是建造者模式 建造者模式(Builder Pattern)是一种对象构建的设计模式,它允许你通过一步一步地构建一个复杂对象,来隐藏复杂对象的创建细节。 这种模式将一个复杂对象的构建过程与其表示过程分离,使得…

跨站请求伪造漏洞(CSRF)

什么是CSRF CSRF(Cross-Site Request Forgery),也被称为 one-click attack 或者 session riding,即跨站请求伪造攻击。 漏洞原理 跨站请求伪造漏洞的原理主要是利用了网站对用户请求的验证不严谨。攻击者会在恶意网站中构造一个…

spring-cloud微服务openfeign

Spring Cloud openfeign对Feign进行了增强,使其支持Spring MVC注解,另外还整合了Ribbon和Nacos,从而使得Feign的使用更加方便 优势,openfeign可以做到使用HTTP请求远程服务时就像洞用本地方法一样的体验,开发者完全感…

获取请求数据

假设有这样一个请求:http://localhost:8080/springmvc/register?namezhangsan&password123&emailzhangsanqq.com 在SpringMVC中应该如何获取请求提交的数据?在SpringMVC中又应该如何获取请求头信息?在SpringMVC中又应该如何获取客户…

搭建第一个Web服务器(在eclipse或idea上部署Tomcat服务器)

💻博主现有专栏: C51单片机(STC89C516),c语言,c,离散数学,算法设计与分析,数据结构,Python,Java基础,MySQL,linux&#xf…

深入理解Linux系统中的前后台任务与守护进程

⭐小白苦学IT的博客主页 ⭐初学者必看:Linux操作系统入门 ⭐代码仓库:Linux代码仓库 ❤关注我一起讨论和学习Linux系统 1.前言 在Linux系统中,进程管理是至关重要的一个环节。其中,前后台任务和守护进程是进程管理中不可忽视的两…

阿里云云效CI/CD配置

1.NODEJS项目流水线配置(vue举例) nodejs构建配置 官方教程 注意:下图的dist是vue项目打包目录名称,根据实际名称配置 # input your command here cnpm cache clean --force cnpm install cnpm run build 主机部署配置 rm -rf /home/vipcardmall/frontend/ mkdir -p /home/…

刷题之Leetcode707题(超级详细)

707.设计链表 力扣题目链接(opens new window)https://leetcode.cn/problems/design-linked-list/ 题意: 在链表类中实现这些功能: get(index):获取链表中第 index 个节点的值。如果索引无效,则返回-1。addAtHead(val)&#x…

Day37代码随想录(1刷) 动态规划

509. 斐波那契数 斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: F(0) 0,F(1) 1 F(n) F(n - 1) F(n - 2),其中 n …

外包干了17天,技术倒退明显

先说情况,大专毕业,18年通过校招进入湖南某软件公司,干了接近6年的功能测试,今年年初,感觉自己不能够在这样下去了,长时间呆在一个舒适的环境会让一个人堕落! 而我已经在一个企业干了四年的功能…

局域网tcp通信实验

两台windows系统计算机简单TCP通信测试_两台计算机tcp通信-CSDN博客 使用这篇文章的小工具。 环境: 我和同学的两台笔记本电脑。 使用我的手机开热点,两台电脑连接热点。 我的: IPv4 地址 . . . . . . . . . . . . : 192.168.92.79 子…

Day04-SHELL自动化编程-循环与颜色函数库

Day04-SHELL自动化编程-循环与颜色函数库 11. 必知必会核心命令11.1 命令概述11.7 案例11.8 小结 12 Shell编程-循环12.1 循环概述12.2 for循环1)最常用的for循环格式2)c语言格式for循环3)for循环格式及应用场景4)案例 12.3 while…

【WSN覆盖优化】基于灰狼优化算法的无线传感器网络覆盖 GWO-WSN覆盖优化【Matlab代码#74】

文章目录 【可更换其他算法,获取资源请见文章第5节:资源获取】1. 灰狼优化算法2. WSN节点感知模型3. 部分代码展示4. 仿真结果展示5. 资源获取 【可更换其他算法,获取资源请见文章第5节:资源获取】 1. 灰狼优化算法 此处略。 2.…

【Java8新特性】四、强大的Stream api

​ 这里写自定义目录标题 一、了解Stream二、流(stream)到底是什么?三、Stream操作的三个步骤四、创建Stream的四种方式五、Stream 的中间操作1、筛选和切片2、map 映射3、排序 六、Stream 的终止操作1、查找和匹配2、归约3、收集 一、了解Stream Stream是Java8中…

spring容器

spring容器 实现方式 spring中提供了各式各样的IOC容器的实现供用户选择和使用,使用什么样的容器取决于用户的需要 BeanFactory 该接口是最简单的容器,提供了基本的DI支持。最常用的BeanFactory实现是XmlBeanFactory类,根据XML文件中的定义加…

idea常用配置

IDEA设置全局配置 参考:IDEA设置全局配置_idea如何打开一个项目,全局设置-CSDN博客 idea提交代码到git或svn上时,怎么忽略.class、.iml文件和文件夹等不必要的文件 参考:idea提交代码到git或svn上时,怎么忽略.class、.iml文件和文…

Python爬虫网络实践:去哪儿旅游数据爬取指南

Python爬虫网络实践:去哪儿旅游数据爬取指南 在这个博客中,我们将探索如何使用 Python 来进行网络数据抓取,并以抓取旅游数据为例进行演示。我们将通过一个简单的示例来说明如何利用 Python 中的常用库进行网页抓取,从而获取旅游…

软件详细设计说明书(套用案例)

2系统总体设计 2.1整体架构 2.2整体功能架构 2.3整体技术架构 2.4设计目标 2.5.1总体原则 2.5.2实用性和先进性 2.5.3标准化、开放性、兼容性 2.5.4高可靠性、稳定性 2.5.5易用性 2.5.6灵活性和可扩展性 2.5.7经济性和投资保护 3系统功能模块详细设计 3.1个人办公…

一键下载 M3U8 并转换为 MP4升级版

之前的下载 M3U8程序,有很多问题, 为此做了一些升级,分享给大家。 增加了存在播放列表的情况处理播放列表路径和ts路径错误问题多线程问题对于电视剧多文件下载的处理 这里从网上找了一部的链接,可以参考这个网站https://www.zu…

3 突破编程_前端_SVG(rect 矩形)

1 rect 元素的基本属性和用法 在SVG中&#xff0c;<rect> 元素用于创建矩形。 <rect> 元素有一些基本的属性&#xff0c;可以用来定义矩形的形状、位置、颜色等。以下是这些属性的详细解释&#xff1a; x 和 y &#xff1a;这两个属性定义矩形左上角的位置。 x …