Redis的持久化

目录

·一、RDB(Redis DataBase)

·二、AOF(Append Only File)


Redis 是内存数据库,如果不将内存中的数据库状态保存到磁盘,那么一旦服务器进程退出,服务器中 的数据库状态也会消失。所以 Redis 提供了持久化功能! 

一、RDB(Redis DataBase)

什么是RDB

 在指定的时间间隔内将内存中的数据集快照写入磁盘,也就是行话讲的Snapshot快照,它恢复时是将快 照文件直接读到内存里。

Redis会单独创建(fork)一个子进程来进行持久化,会先将数据写入到一个临时文件中,待持久化过程 都结束了,再用这个临时文件替换上次持久化好的文件。整个过程中,主进程是不进行任何IO操作的。 这就确保了极高的性能。如果需要进行大规模数据的恢复,且对于数据恢复的完整性不是非常敏感,那 RDB方式要比AOF方式更加的高效。RDB的缺点是最后一次持久化后的数据可能丢失。 

Fork 

Fork的作用是复制一个与当前进程一样的进程。新进程的所有数据(变量,环境变量,程序计数器等) 数值都和原进程一致,但是是一个全新的进程,并作为原进程的子进程。  

Rdb 保存的是 dump.rdb 文件  

配置位置及SNAPSHOTTING解析  

这里的触发条件机制,我们可以修改测试一下: 

save 120 10  # 120秒内修改10次则触发RDB

RDB 是整合内存的压缩过的Snapshot,RDB 的数据结构,可以配置复合的快照触发条件。 

默认: 

  • 1分钟内改了
  • 1万次5分钟内改了10次
  • 15分钟内改了1次 

如果想禁用RDB持久化的策略,只要不设置任何save指令,或者给save传入一个空字符串参数也可以。若要修改完毕需要立马生效,可以手动使用 save 命令!立马生效 ! 

 其余命令解析

Stop-writes-on-bgsave-error:如果配置为no,表示你不在乎数据不一致或者有其他的手段发现和控制,默认为yes。 

rbdcompression:对于存储到磁盘中的快照,可以设置是否进行压缩存储。如果是的话,redis会采用LZF算法进行压缩,如果你不想消耗CPU来进行压缩的话,可以设置为关闭此功能。 

rdbchecksum:在存储快照后,还可以让redis使用CRC64算法来进行数据校验,但是这样做会增加大约10%的性能消耗,如果希望获取到最大的性能提升,可以关闭此功能。默认为yes。 

如何触发RDB快照 

1、配置文件中默认的快照配置,建议多用一台机子作为备份,复制一份 dump.rdb

2、命令save或者是bgsave 

  • save 时只管保存,其他不管,全部阻塞
  • bgsave,Redis 会在后台异步进行快照操作,快照同时还可以响应客户端请求。可以通过lastsave命令获取最后一次成功执行快照的时间。

3、执行flushall命令,也会产生 dump.rdb 文件,但里面是空的,无意义 !

4、退出的时候也会产生 dump.rdb 文件!

如何恢复 

1、将备份文件(dump.rdb)移动到redis安装目录并启动服务即可

2、CONFIG GET dir 获取目录 

127.0.0.1:6379> config get dir
dir
/usr/local/bin

优点和缺点 

优点

1、适合大规模的数据恢复

2、对数据完整性和一致性要求不高

缺点

1、在一定间隔时间做一次备份,所以如果redis意外down掉的话,就会丢失最后一次快照后的所有修改2、Fork的时候,内存中的数据被克隆了一份,大致2倍的膨胀性需要考虑。

小结 

 

二、AOF(Append Only File)

 是什么

以日志的形式来记录每个写操作,将Redis执行过的所有指令记录下来(读操作不记录),只许追加文件但不可以改写文件,redis启动之初会读取该文件重新构建数据,换言之,redis重启的话就根据日志文件的内容将写指令从前到后执行一次以完成数据的恢复工作 

Aof保存的是 appendonly.aof 文件 

配置 

AOF 启动/修复/恢复  

正常恢复:

  • 启动:设置Yes,修改默认的appendonly no,改为yes
  • 将有数据的aof文件复制一份保存到对应目录(config get dir)
  • 恢复:重启redis然后重新加载

异常恢复:

  • 启动:设置Yes
  • 故意破坏 appendonly.aof 文件!
  • 修复: redis-check-aof --fix appendonly.aof 进行修复
  • 恢复:重启 redis 然后重新加载 

Rewrite 

是什么:  

AOF 采用文件追加方式,文件会越来越大,为避免出现此种情况,新增了重写机制,当AOF文件的大小 超过所设定的阈值时,Redis 就会启动AOF 文件的内容压缩,只保留可以恢复数据的最小指令集,可以 使用命令 bgrewriteaof ! 

重写原理: 

AOF 文件持续增长而过大时,会fork出一条新进程来将文件重写(也是先写临时文件最后再 rename),遍历新进程的内存中数据,每条记录有一条的Set语句。重写aof文件的操作,并没有读取旧 的aof文件,这点和快照有点类似!  

触发机制:  

Redis会记录上次重写时的AOF大小,默认配置是当AOF文件大小是上次rewrite后大小的已被且文件大 于64M的触发。

优点和缺点

优点:

1、每修改同步:appendfsync always 同步持久化,每次发生数据变更会被立即记录到磁盘,性能较差 但数据完整性比较好

2、每秒同步: appendfsync everysec 异步操作,每秒记录 ,如果一秒内宕机,有数据丢失

3、不同步: appendfsync no 从不同步  

缺点:

1、相同数据集的数据而言,aof 文件要远大于 rdb文件,恢复速度慢于 rdb。

2、Aof 运行效率要慢于 rdb,每秒同步策略效率较好,不同步效率和rdb相同。  

小总结 

总结 

1、RDB 持久化方式能够在指定的时间间隔内对你的数据进行快照存储

2、AOF 持久化方式记录每次对服务器写的操作,当服务器重启的时候会重新执行这些命令来恢复原始 的数据,AOF命令以Redis 协议追加保存每次写的操作到文件末尾,Redis还能对AOF文件进行后台重 写,使得AOF文件的体积不至于过大。

3、只做缓存,如果你只希望你的数据在服务器运行的时候存在,你也可以不使用任何持久化

4、同时开启两种持久化方式

  • 在这种情况下,当redis重启的时候会优先载入AOF文件来恢复原始的数据,因为在通常情况下AOF 文件保存的数据集要比RDB文件保存的数据集要完整。
  • RDB 的数据不实时,同时使用两者时服务器重启也只会找AOF文件,那要不要只使用AOF呢?作者 建议不要,因为RDB更适合用于备份数据库(AOF在不断变化不好备份),快速重启,而且不会有 AOF可能潜在的Bug,留着作为一个万一的手段。

5、性能建议

  • 因为RDB文件只用作后备用途,建议只在Slave上持久化RDB文件,而且只要15分钟备份一次就够 了,只保留 save 900 1 这条规则。
  • 如果Enable AOF ,好处是在最恶劣情况下也只会丢失不超过两秒数据,启动脚本较简单只load自 己的AOF文件就可以了,代价一是带来了持续的IO,二是AOF rewrite 的最后将 rewrite 过程中产 生的新数据写到新文件造成的阻塞几乎是不可避免的。只要硬盘许可,应该尽量减少AOF rewrite 的频率,AOF重写的基础大小默认值64M太小了,可以设到5G以上,默认超过原大小100%大小重 写可以改到适当的数值。
  • 如果不Enable AOF ,仅靠 Master-Slave Repllcation 实现高可用性也可以,能省掉一大笔IO,也 减少了rewrite时带来的系统波动。代价是如果Master/Slave 同时倒掉,会丢失十几分钟的数据, 启动脚本也要比较两个 Master/Slave 中的 RDB文件,载入较新的那个,微博就是这种架构。  

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/304983.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

从文字到思维:呆马GPT在人工智能领域的创新之旅

引言 生成式预训练变换器(Generative Pre-trained Transformer,简称GPT)领域是人工智能技术中的一大革新。自OpenAI推出第一代GPT以来,该技术经历了多代发展,不断提升模型的规模、复杂度和智能化程度。GPT模型通过在大…

【Linux】vim 编辑器

Linux 系统自带了 gedit 和 vi 编辑器,gedit 是图形化界面的操作,而 vi 由比较难用,所以建议安装 vim 编辑器,vim 是从 vi 发展出来的一个文本编辑器,相当于增强版的 vi ,其代码补完、编译及错误跳转等功能…

从路由器syslog日志监控路由器流量

路由器是关键的网络基础设施组件,需要随时监控,定期监控路由器可以帮助管理员确保路由器通信正常。日常监控还可以清楚地显出通过网络的流量,通过分析路由器流量,安全管理员可及早识别可能发生的网络事件,从而避免停机…

负荆请罪将相和之后的廉颇蔺相如,下场如何?

“将相和”的故事相信许多人都听说过, 这个故事来自于司马迁的《史记》,并被许多版本的语文教科书所收录,而“完璧归赵”“负荆请罪”等成语也都是出自这个故事。但是这个故事并没有讲“将相和”之后的内容,实际上,蔺相…

C语言面试题之合法二叉搜索树

合法二叉搜索树 实例要求 实现一个函数,检查一棵二叉树是否为二叉搜索树; 示例 1: 输入:2/ \1 3 输出: true 示例 2: 输入:5/ \1 4/ \3 6 输出: false 解释: 输入为: [5,1,4,null,null,3,6]。根节点的值为 5 ,但是其右子节点值为 4 …

VS2022使用属性表快速设置OpenCV工程属性

1.创建C控制台应用 2.配置工程 3.打开工程后,为工程添加属性表 打开属性管理器窗口,选择Debug|x64 然后右击选择添加新的项目属性表 并命名为opencv490_debug_x64 点击添加 Debug版本属性表添加成功 使用相同方法添加Release版本属性表 双击debug版本属性表并添加包含目录 添…

90天玩转Python—03—基础知识篇:Python和PyCharm(语言特点、学习方法、工具安装)

90天玩转Python系列文章目录 90天玩转Python—01—基础知识篇:C站最全Python标准库总结 90天玩转Python--02--基础知识篇:初识Python与PyCharm 90天玩转Python—03—基础知识篇:Python和PyCharm(语言特点、学习方法、工具安装) 90天玩转Python—04—基础知识篇:Pytho…

Github第一Star数的国产免费开源防火墙--雷池社区版初步体验

前言 近期准备搭建一个博客网站,用来存储工作室同学们的学习笔记。服务器准备直接放在公网上,方便大家随时随地的上传和浏览,为了防止网站被人日穿成为肉鸡,一些防御措施还是要部署的。 首先明确自己的需求: 零成本…

【Python】控制台进度条

在Python开发中,有时需要向用户展示一个任务的进度,以提供更好的交互体验。下面我将展示如何使用Python来创建一个简单的控制台进度条。 效果: 代码: import time import sys def print_progress_bar(completed, total, length…

Windows搭建Jellyfin影音服务结合内网穿透实现公网访问本地视频文件

文章目录 1. 前言2. Jellyfin服务网站搭建2.1. Jellyfin下载和安装2.2. Jellyfin网页测试 3.本地网页发布3.1 cpolar的安装和注册3.2 Cpolar云端设置3.3 Cpolar本地设置 4.公网访问测试5. 结语 1. 前言 随着移动智能设备的普及,各种各样的使用需求也被开发出来&…

【Web】NSSRound#1-20 Basic 刷题记录(全)

目录 [NSSRound#1 Basic]basic_check [NSSRound#1 Basic]sql_by_sql [NSSCTF 2nd]php签到 [NSSCTF 2nd]MyBox [NSSCTF 2nd]MyBox(revenge) [NSSCTF 2nd]MyHurricane [NSSCTF 2nd]MyJs [NSSRound#3 Team]This1sMysql [NSSRound#3 Team]path_by_path [NSSRound#…

二叉树应用——最优二叉树(Huffman树)、贪心算法—— Huffman编码

1、外部带权外部路径长度、Huffman树 从图中可以看出,深度越浅的叶子结点权重越大,深度越深的叶子结点权重越小的话,得出的带权外部路径长度越小。 Huffman树就是使得外部带权路径最小的二叉树 2、如何构造Huffman树 (1&#xf…

【Python-MP4文体提取】

Python-MP4文体提取 ■ pip 和 setuptools工具■ OpenCV和Tesseract■ Tesseract OCR V5.0安装教程(Windows)■ 1. 运行程序出现如下问题:我们需要安装Tesseract OCR■ 2. 下载Tesseract-OCR■ 3. 安装Tesseract-OCR■ 4. 添加到环境变量的系…

Golang中的上下文-context包的简介及使用

文章目录 简介context.Background()上下文取消函数上下文值传递建议Reference 简介 Go语言中的context包定义了一个名为Context的类型,它定义并传递截止日期、取消信号和其他请求范围的值,形成一个链式模型。如果我们查看官方文档,它是这样说…

Ollama利用嵌入模型实现RAG应用

Ollama支持embedding models嵌入模型,从而支持RAG(retrieval augmented generation)应用,结合文本提示词,检索到文档或相关数据。嵌入模型是通过训练生成向量嵌入,这是一长串数字数组,代表文本序…

练习 21 Web [GXYCTF2019]BabySQli

SQL联合查询,注意有源码看源码,Base64以及32的区别,MD5碰撞 打开后有登录框,先随意登录尝试 只有输入admin才是返回wrong pass! 其他返回wrong user 所以用户名字段一定要输入admin 养成好习惯,先查看源码…

kali上python3切换python2环境

一、然后打开终端输入 python --version 二、 打开终端分别输入下面两条命令: update-alternatives --install /usr/bin/python python /usr/bin/python2 100 update-alternatives --install /usr/bin/python python /usr/bin/python3 150 三、 如果需要切换python版…

Windows系统C盘空间优化进阶:磁盘清理与Docker日志管理

Windows系统C盘空间优化进阶:磁盘清理与Docker日志管理 文章目录 Windows系统C盘空间优化进阶:磁盘清理与Docker日志管理磁盘清理工具 使用“运行”命令访问磁盘清理利用存储感知自动管理空间清理WinSxS文件夹结合手动清理策略 小结删除临时文件总结&…

流式密集视频字幕

流式密集视频字幕 摘要1 IntroductionRelated Work3 Streaming Dense Video Captioning Streaming Dense Video Captioning 摘要 对于一个密集视频字幕生成模型,预测在视频中时间上定位的字幕,理想情况下应该能够处理长的输入视频,预测丰富、…

Linux系统概述与安装

Linux的介绍 Linux内核 Linux内核是 Linux 操作系统主要组件,也是计算机硬件与其软件之间的交互入口。它负责两者之间的通信,还要尽可能高效地管理资源 Linux Shell shell是系统的用户界面,提供了用户与内核进行交互操作的一种接口 Linux文…